×

Anthracite
Anthracite

Tuff
Tuff



ADD
Compare
X
Anthracite
X
Tuff

Anthracite and Tuff

Add ⊕
1 Definition
1.1 Definition
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption
1.2 History
1.2.1 Origin
Pennsylvania, U.S.
Italy
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Greek anthrakites, from anthrax, anthrak meaning coal
From a Latin word tophous then in Italian tufo and finally tuff
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Amorphous, Glassy
Clastic, Pyroclastic
2.2 Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey
Brown, Grey, Yellow
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Veined or Pebbled
Dull, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
Not Yet Used
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
Building houses or walls, Construction Aggregate
3.2.2 Medical Industry
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
Not Yet Used
3.3 Antiquity Uses
Not Yet Used
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
Creating Artwork
4 Types
4.1 Types
Semi-anthracite and Meta-anthracite
Welded tuff, Rhyolitic tuff, Basaltic tuff, Trachyte tuff, Andesitic tuff and Ignimbrite.
4.2 Features
Helps in production of Heat and Electricity, Used as fossil fuel
Always found as volcanic pipes over deep continental crust
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Easter Island in the Polynesian Triangle, Pacific Ocean
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
Tuff is formed when large masses of ash and sand which are mixed with hot gases are ejected by a volcano and avalanche rapidly down its slopes.
5.2 Composition
5.2.1 Mineral Content
Calcite, Clay, Clay Minerals
Calcite, Chlorite
5.2.2 Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
Hydrogen Sulfide, Sulfur Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-1.54-6
Coal
1 7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Uneven
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Shiny
Vitreous to Dull
6.1.7 Compressive Strength
NA243.80 N/mm2
What Is Obsidian
0.15 450
6.1.8 Cleavage
Non-Existent
Not Available
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
1.1-1.42.73
Granite
0 8.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
1.25-2.5 g/cm31-1.8 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
1.32 kJ/Kg K0.20 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Water Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen
7.1.2 Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
Cameroon, Cape Verde, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Uganda
7.1.3 Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Hawaii Islands
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada, Costa Rica, Panama, USA
7.2.2 South America
Brazil, Chile, Colombia, Venezuela
Argentina, Bolivia, Brazil, Chile, Ecuador, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Victoria
Central Australia, Western Australia

All about Anthracite and Tuff Properties

Know all about Anthracite and Tuff properties here. All properties of rocks are important as they define the type of rock and its application. Anthracite belongs to Metamorphic Rocks while Tuff belongs to Igneous Rocks.Texture of Anthracite is Amorphous, Glassy whereas that of Tuff is Clastic, Pyroclastic. Anthracite appears Veined or Pebbled and Tuff appears Dull, Vesicular and Foilated. The luster of Anthracite is shiny while that of Tuff is vitreous to dull. Anthracite is available in black, brown, dark brown, grey, light to dark grey colors whereas Tuff is available in brown, grey, yellow colors. The commercial uses of Anthracite are alumina refineries, electricity generation, liquid fuel, manufacture of soap, solvents, dyes, plastics and fibres, paper industry and that of Tuff are creating artwork.