Home
×

Laterite
Laterite

Dolomite
Dolomite



ADD
Compare
X
Laterite
X
Dolomite

Laterite vs Dolomite

Add ⊕
1 Definition
1.1 Definition
Laterite rock is a type of Sedimentary rock which is rich in iron and aluminium, formed in hot and wet tropical areas
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight
1.2 History
1.2.1 Origin
India
Southern Alps, France
1.2.2 Discoverer
Francis Buchanan-Hamilton
Dolomieu
1.3 Etymology
From Latin later brick, tile + -ite1
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock
1.4 Class
Sedimentary Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy, Massive, Porphyritic
Earthy
2.2 Color
Brown, Buff, Red
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Rough and Banded
Glassy or Pearly
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Flooring, Interior Decoration
Decorative Aggregates, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
Cobblestones, for Road Aggregate, Landscaping, Roadstone
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Source of bauxite, Used in aquariums
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Boninite and Jasperoid
4.2 Features
Is one of the oldest rock, Very fine grained rock
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Present
5 Formation
5.1 Formation
Laterite is a type of sedimentary rock which is generally a reddish weathering product of basalt.
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.
5.2 Composition
5.2.1 Mineral Content
Aluminum Oxides, Biotite, Hematite, Hornblade, Iron Oxides, Manganese Oxides, Micas, Muscovite or Illite, Plagioclase, Pyroxene
Clay Minerals, Pyrite, Quartz, Sulfides
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Not Applicable
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
2
3.5-4
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Dull
Vitreous and Pearly
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
140.00 N/mm2
Rank: 15 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Applicable
Perfect
6.1.9 Toughness
Not Available
1
6.1.10 Specific Gravity
Not Available
2.8-3
6.1.11 Transparency
Opaque
Transparent to Translucent
6.1.12 Density
Not Available
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India
China, India
7.1.2 Africa
East Africa, Western Africa
Morocco, Namibia
7.1.3 Europe
England, Romania, Scotland
Austria, Italy, Romania, Spain, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Mexico, USA
7.2.2 South America
Not Yet Found
Brazil, Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
New South Wales, Queensland, Yorke Peninsula

Laterite vs Dolomite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Laterite and Dolomite Reserves. Laterite rock is a type of Sedimentary rock which is rich in iron and aluminium, formed in hot and wet tropical areas. Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Laterite vs Dolomite information and Laterite vs Dolomite characteristics in the upcoming sections.

Laterite vs Dolomite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Laterite vs Dolomite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Laterite and Properties of Dolomite. Learn more about Laterite vs Dolomite in the next section. The interior uses of Laterite include Decorative aggregates, Flooring and Interior decoration whereas the interior uses of Dolomite include Decorative aggregates, Homes and Interior decoration. Due to some exceptional properties of Laterite and Dolomite, they have various applications in construction industry. The uses of Laterite in construction industry include Cobblestones, For road aggregate, Landscaping, Roadstone and that of Dolomite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock.

More about Laterite and Dolomite

Here you can know more about Laterite and Dolomite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Laterite and Dolomite consists of mineral content and compound content. The mineral content of Laterite includes Aluminum Oxides, Biotite, Hematite, Hornblade, Iron Oxides, Manganese Oxides, Micas, Muscovite or Illite, Plagioclase, Pyroxene and mineral content of Dolomite includes Clay Minerals, Pyrite, Quartz, Sulfides. You can also check out the list of all Sedimentary Rocks. When we have to compare Laterite vs Dolomite, the texture, color and appearance plays an important role in determining the type of rock. Laterite is available in brown, buff, red colors whereas, Dolomite is available in black, brown, colourless, green, grey, pink, white colors. Appearance of Laterite is Rough and Banded and that of Dolomite is Glassy or Pearly. Properties of rock is another aspect for Laterite vs Dolomite. The hardness of Laterite is 2 and that of Dolomite is 3.5-4. The types of Laterite are Not Available whereas types of Dolomite are Boninite and Jasperoid. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Laterite and Dolomite is white. The specific heat capacity of Laterite is Not Available and that of Dolomite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Laterite is heat resistant, pressure resistant whereas Dolomite is heat resistant, pressure resistant, wear resistant.