Home
×

Ignimbrite
Ignimbrite

Gneiss
Gneiss



ADD
Compare
X
Ignimbrite
X
Gneiss

Ignimbrite vs Gneiss

Add ⊕
1 Definition
1.1 Definition
Ignimbrite is a volcanic rock consisting mainly of pumice fragments, formed by the consolidation of material deposited by pyroclastic flows
Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks
1.2 History
1.2.1 Origin
New Zealand
Unknown
1.2.2 Discoverer
Patrick Marshall
Unknown
1.3 Etymology
From Latin ignis fire + imber, imbr- shower of rain, storm cloud + -ite
From the Middle High German verb gneist (to spark; so called because the rock glitters)
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic
Banded, Foliated, Platy
2.2 Color
Beige, Black, Brown, Grey, Pink, White
Black, Brown, Pink, Red, White
2.3 Maintenance
More
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Dull, Vesicular and Foilated
Foliated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Countertops, Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Building houses or walls, Construction Aggregate
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork
Cemetery Markers, Jewelry, Tombstones, Used in aquariums
4 Types
4.1 Types
Not Available
Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.
4.2 Features
Always found as volcanic pipes over deep continental crust
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Konark Sun Temple in India, Washington Monument, US
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Ignimbrites are formed from very poorly sorted mixture of volcanic ash or tuff and pumice lapilli, commonly with scattered lithic fragments.
Gneiss is a high grade metamorphic rock i.e. it has been subjected to higher temperatures and pressures than schist. It is formed by the metamorphosis of Gneiss forms from volcanic rock, shale or granitie.
5.2 Composition
5.2.1 Mineral Content
Apatite, Biotite, Calcite, Chlorite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
5.2.2 Compound Content
Ca, NaCl
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Impact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Biological Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
4-6
7
6.1.2 Grain Size
Fine Grained
Medium to Coarse Grained
6.1.3 Fracture
Uneven
Irregular
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Very Less Porous
6.1.6 Luster
Vitreous to Dull
Dull
6.1.7 Compressive Strength
Flint
243.80 N/mm2
Rank: 5 (Overall)
125.00 N/mm2
Rank: 17 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Poor
6.1.9 Toughness
Not Available
1.2
6.1.10 Specific Gravity
2.73
2.5-2.7
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
1-1.8 g/cm3
2.6-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.20 kJ/Kg K
Rank: 25 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
7.1.2 Africa
Cameroon, Cape Verde, Chad, Djibouti, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Tanzania, Uganda
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
7.1.3 Europe
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Switzerland, Ukraine, United Kingdom
7.1.4 Others
Antarctica, Hawaii Islands
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Panama, USA
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
New South Wales, New Zealand, Queensland, Victoria

Ignimbrite vs Gneiss Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Ignimbrite and Gneiss Reserves. Ignimbrite is a volcanic rock consisting mainly of pumice fragments, formed by the consolidation of material deposited by pyroclastic flows. Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Ignimbrite vs Gneiss information and Ignimbrite vs Gneiss characteristics in the upcoming sections.

Ignimbrite vs Gneiss Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Ignimbrite vs Gneiss characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Ignimbrite and Properties of Gneiss. Learn more about Ignimbrite vs Gneiss in the next section. The interior uses of Ignimbrite include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Gneiss include Countertops, Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Ignimbrite and Gneiss, they have various applications in construction industry. The uses of Ignimbrite in construction industry include Building houses or walls, Construction aggregate and that of Gneiss include As dimension stone.

More about Ignimbrite and Gneiss

Here you can know more about Ignimbrite and Gneiss. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Ignimbrite and Gneiss consists of mineral content and compound content. The mineral content of Ignimbrite includes Apatite, Biotite, Calcite, Chlorite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz and mineral content of Gneiss includes Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Ignimbrite vs Gneiss, the texture, color and appearance plays an important role in determining the type of rock. Ignimbrite is available in beige, black, brown, grey, pink, white colors whereas, Gneiss is available in black, brown, pink, red, white colors. Appearance of Ignimbrite is Dull, Vesicular and Foilated and that of Gneiss is Foliated. Properties of rock is another aspect for Ignimbrite vs Gneiss. The hardness of Ignimbrite is 4-6 and that of Gneiss is 7. The types of Ignimbrite are Not Available whereas types of Gneiss are Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Ignimbrite and Gneiss is white. The specific heat capacity of Ignimbrite is 0.20 kJ/Kg K and that of Gneiss is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Ignimbrite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Gneiss is heat resistant, pressure resistant, scratch resistant, wear resistant.