×

Lignite
Lignite

Obsidian
Obsidian



ADD
Compare
X
Lignite
X
Obsidian

Lignite and Obsidian

Add ⊕
1 Definition
1.1 Definition
Lignite is a soft brownish coal which shows traces of plants and is intermediate between bituminous coal and peat
Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimum crystal growth
1.2 History
1.2.1 Origin
France
Ethiopia
1.2.2 Discoverer
Unknown
Obsius
1.3 Etymology
From French, Latin lignum wood + -ite1
From Latin obsidianus, misprint of Obsianus (lapis) (stone) of Obsius
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Opaque Rock
2 Texture
2.1 Texture
Amorphous, Glassy
Glassy
2.2 Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey
Black, Blue, Brown, Green, Orange, Red, Tan, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Veined or Pebbled
Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
Not Yet Used
Garden Decoration
3.1.3 Other Architectural Uses
Not Yet Used
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
for Road Aggregate, Steel Production
Arrowheads, Cutting Tool, Knives, Scrapers, Spear Points
3.2.2 Medical Industry
Not Yet Used
Surgery
3.3 Antiquity Uses
Not Yet Used
Artifacts, Jewellery
3.4 Other Uses
3.4.1 Commercial Uses
Electricity Generation
Creating Artwork, Mirror, Used in aquariums
4 Types
4.1 Types
Xyloid Lignite or Fossil Wood and Compact Lignite or Perfect Lignite
Fireworks Obsidian, Mahogany, Sheen Obsidian, Snowflake obsidian and Velvet Peacock Obsidian
4.2 Features
Generally rough to touch, Helps in production of Heat and Electricity, Used as fossil fuel
Blocks negativity, Helps to protect against depression
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Not Yet Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Not Yet Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Coal formation takes place due to accumulation of plant debris in a swamp environment. The Coal formation process continues, as peat turns into lignite brown or black coal at increasing heat and pressure.
When the lava is released from volcano, it undergoes a very rapid cooling which freezes the mechanisms of crystallization. The result is a volcanic glass with a uniform smooth texture.
5.2 Composition
5.2.1 Mineral Content
Not Available
Not Available
5.2.2 Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
15-5.5
Coal
1 7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Not Applicable
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
Black
White
6.1.5 Porosity
Highly Porous
Very Less Porous
6.1.6 Luster
Dull to Vitreous to Submetallic
Vitreous
6.1.7 Compressive Strength
NA0.15 N/mm2
Slate
0.15 450
6.1.8 Cleavage
Non-Existent
Non-Existent
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
1.1-1.42.6-2.7
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
800-801 g/cm32.6 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
1.26 kJ/Kg K0.92 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
Afghanistan, Indonesia, Japan, Russia
7.1.2 Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
Kenya
7.1.3 Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
Greece, Hungary, Iceland, Italy, Turkey
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada, Mexico, USA
7.2.2 South America
Brazil, Chile, Colombia, Venezuela
Argentina, Chile, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Victoria
New Zealand

All about Lignite and Obsidian Properties

Know all about Lignite and Obsidian properties here. All properties of rocks are important as they define the type of rock and its application. Lignite belongs to Sedimentary Rocks while Obsidian belongs to Igneous Rocks.Texture of Lignite is Amorphous, Glassy whereas that of Obsidian is Glassy. Lignite appears Veined or Pebbled and Obsidian appears Shiny. The luster of Lignite is dull to vitreous to submetallic while that of Obsidian is vitreous. Lignite is available in black, brown, dark brown, grey, light to dark grey colors whereas Obsidian is available in black, blue, brown, green, orange, red, tan, yellow colors. The commercial uses of Lignite are electricity generation and that of Obsidian are creating artwork, mirror, used in aquariums.