Home
×

Eclogite
Eclogite

Tuff
Tuff



ADD
Compare
X
Eclogite
X
Tuff

Eclogite vs Tuff

Add ⊕
1 Definition
1.1 Definition
Eclogite is an extreme metamorphic rock, formed by regional metamorphism of basalt rock under very high pressure and temperature
Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption
1.2 History
1.2.1 Origin
Unknown
Italy
1.2.2 Discoverer
René Just Haüy
Unknown
1.3 Etymology
From French, Greek eklogē selection with reference to the selective content of the rock + -ite1
From a Latin word tophous then in Italian tufo and finally tuff
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Clastic, Pyroclastic
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Brown, Grey, Yellow
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull, Banded and Foilated
Dull, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
Paving Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Not Yet Used
Building houses or walls, Construction Aggregate
3.2.2 Medical Industry
In Chemical and Pharmaceutical Industry, Medicines and Cosmetics
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone
Creating Artwork
4 Types
4.1 Types
Not Available
Welded tuff, Rhyolitic tuff, Basaltic tuff, Trachyte tuff, Andesitic tuff and Ignimbrite.
4.2 Features
Available in Lots of Colors and Patterns, Generally rough to touch, Is one of the oldest rock
Always found as volcanic pipes over deep continental crust
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Easter Island in the Polynesian Triangle, Pacific Ocean
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Eclogite forms from high-pressure metamorphism of mafic igneous rocks mainly, basalt or gabbro as it plunges into the mantle in a subduction zone.
Tuff is formed when large masses of ash and sand which are mixed with hot gases are ejected by a volcano and avalanche rapidly down its slopes.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Coesite, Corundum, Dolomite, Garnet, Kyanite, Lawsonite, Paragonite, Phengite, Pyroxene, Quartz, Rutile, Zoisite
Calcite, Chlorite
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Carbon Dioxide, Iron(III) Oxide, Magnesium Carbonate, MgO, Sodium Oxide, Potassium, Sodium
Hydrogen Sulfide, Sulfur Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Sea Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
4-6
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Not Available
Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Vitreous to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
243.80 N/mm2
Rank: 5 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Not Available
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.86-2.87
2.73
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
3.2-3.6 g/cm3
1-1.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.20 kJ/Kg K
Rank: 25 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Kazakhstan, Kuwait, Russia, South Korea, Thailand, Turkey
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen
7.1.2 Africa
Ethiopia, Morocco, South Africa
Cameroon, Cape Verde, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Uganda
7.1.3 Europe
France, Germany, Italy, Norway, Scotland
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom
7.1.4 Others
Greenland
Antarctica, Hawaii Islands
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Panama, USA
Canada, Costa Rica, Panama, USA
7.2.2 South America
Argentina, Brazil, Colombia, Ecuador
Argentina, Bolivia, Brazil, Chile, Ecuador, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New Zealand, Queensland
Central Australia, Western Australia

Eclogite vs Tuff Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Eclogite and Tuff Reserves. Eclogite is an extreme metamorphic rock, formed by regional metamorphism of basalt rock under very high pressure and temperature. Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Eclogite vs Tuff information and Eclogite vs Tuff characteristics in the upcoming sections.

Eclogite vs Tuff Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Eclogite vs Tuff characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Eclogite and Properties of Tuff. Learn more about Eclogite vs Tuff in the next section. The interior uses of Eclogite include Decorative aggregates and Interior decoration whereas the interior uses of Tuff include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Eclogite and Tuff, they have various applications in construction industry. The uses of Eclogite in construction industry include Not yet used and that of Tuff include Building houses or walls, Construction aggregate.

More about Eclogite and Tuff

Here you can know more about Eclogite and Tuff. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Eclogite and Tuff consists of mineral content and compound content. The mineral content of Eclogite includes Amphibole, Coesite, Corundum, Dolomite, Garnet, Kyanite, Lawsonite, Paragonite, Phengite, Pyroxene, Quartz, Rutile, Zoisite and mineral content of Tuff includes Calcite, Chlorite. You can also check out the list of all Metamorphic Rocks. When we have to compare Eclogite vs Tuff, the texture, color and appearance plays an important role in determining the type of rock. Eclogite is available in black, brown, colourless, green, grey, pink, white colors whereas, Tuff is available in brown, grey, yellow colors. Appearance of Eclogite is Dull, Banded and Foilated and that of Tuff is Dull, Vesicular and Foilated. Properties of rock is another aspect for Eclogite vs Tuff. The hardness of Eclogite is 3.5-4 and that of Tuff is 4-6. The types of Eclogite are Not Available whereas types of Tuff are Welded tuff, Rhyolitic tuff, Basaltic tuff, Trachyte tuff, Andesitic tuff and Ignimbrite.. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Eclogite and Tuff is white. The specific heat capacity of Eclogite is Not Available and that of Tuff is 0.20 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Eclogite is heat resistant whereas Tuff is heat resistant, impact resistant, pressure resistant, wear resistant.