Home
×

Diorite
Diorite

Jasperoid
Jasperoid



ADD
Compare
X
Diorite
X
Jasperoid

Diorite and Jasperoid

Add ⊕
1 Definition
1.1 Definition
Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene
Jasperoid is a rare, peculiar type of metasomatic alteration of rocks
1.2 History
1.2.1 Origin
Unknown
USA
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From early 19th century coined in French, formed irregularly from Greek diorizein distinguish
From silica, the main mineral content of Jasperoid
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Earthy
2.2 Color
Black, Brown, Light to Dark Grey, White
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Shiny
Glassy or Pearly
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Jewellery, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Curling
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Typically speckled black and white.
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Diorite is a coarse-grained intrusive igneous rock which contains large interlocking and randomly oriented crystals and forms when molten lava does not reach the Earth’s surface and cools down in the Earth’s crust.
Jasperoid is a rare and peculiar type of metasomatic alteration of rocks. It is formed by extreme alteration of wall rocks within a shear zone which may occur in sediments, andesites, trachytes and basalts.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
Clay Minerals, Pyrite, Quartz, Sulfides
5.2.2 Compound Content
Silicon Dioxide
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
3.5-4
6.1.2 Grain Size
Medium to Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
Bluish Black
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Shiny
Vitreous and Pearly
6.1.7 Compressive Strength
What Is Flint
225.00 N/mm2
Rank: 7 (Overall)
140.00 N/mm2
Rank: 15 (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
2.1
1
6.1.10 Specific Gravity
2.8-3
2.8-3
6.1.11 Transparency
Opaque
Transparent to Translucent
6.1.12 Density
2.8-3 g/cm3
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
China, India
7.1.2 Africa
Egypt
Morocco, Namibia
7.1.3 Europe
Finland, Germany, Italy, Romania, Sweden, Turkey, United Kingdom
Austria, Italy, Romania, Spain, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Mexico, USA
7.2.2 South America
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
Brazil, Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New South Wales, Queensland, Yorke Peninsula

All about Diorite and Jasperoid Properties

Know all about Diorite and Jasperoid properties here. All properties of rocks are important as they define the type of rock and its application. Diorite belongs to Igneous Rocks while Jasperoid belongs to Sedimentary Rocks.Texture of Diorite is Phaneritic whereas that of Jasperoid is Earthy. Diorite appears Shiny and Jasperoid appears Glassy or Pearly. The luster of Diorite is shiny while that of Jasperoid is vitreous and pearly. Diorite is available in black, brown, light to dark grey, white colors whereas Jasperoid is available in black, brown, colourless, green, grey, pink, white colors. The commercial uses of Diorite are creating artwork, curling and that of Jasperoid are an oil and gas reservoir, as a feed additive for livestock, gemstone, metallurgical flux, production of lime, soil conditioner, source of magnesia (mgo).