×

Diorite
Diorite

Porphyry
Porphyry



ADD
Compare
X
Diorite
X
Porphyry

Diorite vs Porphyry

Add ⊕
1 Definition
1.1 Definition
Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene
Porphyry is a reddish-brown to purple igneous rock containing large phenocrysts of various minerals embedded in a fine-grained matrix
1.2 History
1.2.1 Origin
Unknown
Egypt
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From early 19th century coined in French, formed irregularly from Greek diorizein distinguish
From Old French porfire, from Italian porfiro and in some cases directly from Latin porphyrites
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Porphyritic
2.2 Color
Black, Brown, Light to Dark Grey, White
Black, Brown, Colourless, Green, Grey, Red, Rust, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Shiny
Dull
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
Construction Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Curling
Creating Artwork, Gemstone, Jewelry
4 Types
4.1 Types
Not Available
Rhomb Porphyry
4.2 Features
Typically speckled black and white.
Generally rough to touch, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Diorite is a coarse-grained intrusive igneous rock which contains large interlocking and randomly oriented crystals and forms when molten lava does not reach the Earth’s surface and cools down in the Earth’s crust.
Porphyry is formed in two stages: the magma cools slowly deep within the crust or the magma is cools rapidly as it erupts from a volcano, creating small grains that are usually invisible to naked eye.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
Biotite, Chert, Feldspar, Garnet, Graphite, Quartz, Silica
5.2.2 Compound Content
Silicon Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Not Registered
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-76-7
Coal
1 7
6.1.2 Grain Size
Medium to Coarse Grained
Fine Grained
6.1.3 Fracture
Not Available
Irregular
6.1.4 Streak
Bluish Black
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Shiny
Dull
6.1.7 Compressive Strength
225.00 N/mm2NA
Obsidian
0.15 450
6.1.8 Cleavage
Not Available
Imperfect
6.1.9 Toughness
2.1
1.7
6.1.10 Specific Gravity
2.8-32.5-4
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.8-3 g/cm32.5-2.52 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NANA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
China, Kazakhstan, South Korea, Thailand, Turkey, Vietnam
7.1.2 Africa
Egypt
Egypt, Ethiopia, Ghana, South Africa
7.1.3 Europe
Finland, Germany, Italy, Romania, Sweden, Turkey, United Kingdom
Finland, France, Germany, Great Britain, Hungary, Iceland, Ireland, Italy, Netherlands, Norway, Romania, Sweden, Switzerland
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, Cuba, Jamaica, USA
7.2.2 South America
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
Bolivia, Brazil, Colombia, Ecuador, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New South Wales, New Zealand, Western Australia

Diorite vs Porphyry Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Diorite and Porphyry Reserves. Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene. Porphyry is a reddish-brown to purple igneous rock containing large phenocrysts of various minerals embedded in a fine-grained matrix. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Diorite vs Porphyry information and Diorite vs Porphyry characteristics in the upcoming sections.

Diorite vs Porphyry Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Diorite vs Porphyry characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Diorite and Properties of Porphyry. Learn more about Diorite vs Porphyry in the next section. The interior uses of Diorite include Decorative aggregates and Interior decoration whereas the interior uses of Porphyry include Decorative aggregates and Interior decoration. Due to some exceptional properties of Diorite and Porphyry, they have various applications in construction industry. The uses of Diorite in construction industry include As dimension stone, Cement manufacture, Cobblestones, Construction aggregate, For road aggregate and that of Porphyry include Construction aggregate.

More about Diorite and Porphyry

Here you can know more about Diorite and Porphyry. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Diorite and Porphyry consists of mineral content and compound content. The mineral content of Diorite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon and mineral content of Porphyry includes Biotite, Chert, Feldspar, Garnet, Graphite, Quartz, Silica. You can also check out the list of all Igneous Rocks. When we have to compare Diorite vs Porphyry, the texture, color and appearance plays an important role in determining the type of rock. Diorite is available in black, brown, light to dark grey, white colors whereas, Porphyry is available in black, brown, colourless, green, grey, red, rust, white colors. Appearance of Diorite is Shiny and that of Porphyry is Dull. Properties of rock is another aspect for Diorite vs Porphyry. Hardness of Diorite and Porphyry is 6-7. The types of Diorite are Not Available whereas types of Porphyry are Rhomb Porphyry. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Diorite is bluish black while that of Porphyry is white. The specific heat capacity of Diorite is Not Available and that of Porphyry is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Diorite is heat resistant, pressure resistant, wear resistant whereas Porphyry is heat resistant, impact resistant.