×

Coal
Coal

Peridotite
Peridotite



ADD
Compare
X
Coal
X
Peridotite

Coal and Peridotite

Add ⊕
1 Definition
1.1 Definition
Coal is a combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers called coal beds
Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle
1.2 History
1.2.1 Origin
USA
Pike County, U.S
1.2.2 Discoverer
John Peter Salley
Unknown
1.3 Etymology
From the Old English term col, which has meant mineral of fossilized carbon since the 13th century
From French, from peridot +‎ -ite
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Amorphous, Glassy
Phaneritic
2.2 Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey
Dark Greenish - Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Veined or Pebbled
Rough and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
Not Yet Used
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
As Dimension Stone, Cobblestones
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
Creating Artwork, Gemstone, Jewelry, Source of Chromite, Platinum, Nickel and Garnet, Source of Diamonds
4 Types
4.1 Types
Peat, Lignite, Sub-Bituminous Coal, Bituminous Coal, Anthracite, Graphite
Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite
4.2 Features
Helps in production of Heat and Electricity, Used as fossil fuel
Constitutes upper part of the Earth's mantle, Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Coal forms from the accumulation of plant debris in a swamp environment which is buried by sediments such as mud or sand and then compacted to form coal.
Peridotites can be formed in two ways: as mantle rocks formed during the accretion and differentiation of the Earth or as cumulate rocks formed by precipitation of olivine and pyroxenes from basaltic magmas.
5.2 Composition
5.2.1 Mineral Content
Analcime, Apatite, Barite, Calcite, Chalcopyrite, Chlorite, Chromite, Clausthalite, Clay Minerals, Crandallite Group, Dolomite, Feldspar, Galena, Gypsum, Marcasite, Muscovite or Illite, Pyrite, Quartz, Siderite, Sphalerite, Zircon
Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene
5.2.2 Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
Ca, Fe, Mg, Potassium, Silicon Dioxide, Sodium, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-1.55.5-6
Slate
1 7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Dull to Vitreous to Submetallic
Shiny
6.1.7 Compressive Strength
NA107.55 N/mm2
What Is Obsidian
0.15 450
6.1.2 Cleavage
Non-Existent
Imperfect
6.1.3 Toughness
Not Available
2.1
6.1.4 Specific Gravity
1.1-1.43-3.01
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
1100-1400 g/cm33.1-3.4 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
1.32 kJ/Kg K1.26 kJ/Kg K
What Is Granulite
0.14 3.2
6.1.2 Resistance
Heat Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
China, India, Indonesia, Kazakhstan, Russia, South Korea, Thailand, Turkey
7.1.2 Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
Morocco, South Africa
7.1.3 Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
Finland, France, Georgia, Germany, Great Britain, Italy, Kazakhstan, Netherlands, Norway, Spain, Switzerland, Venezuela
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada, USA
7.2.2 South America
Brazil, Chile, Colombia, Venezuela
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Victoria
New Zealand, Western Australia

All about Coal and Peridotite Properties

Know all about Coal and Peridotite properties here. All properties of rocks are important as they define the type of rock and its application. Coal belongs to Sedimentary Rocks while Peridotite belongs to Igneous Rocks.Texture of Coal is Amorphous, Glassy whereas that of Peridotite is Phaneritic. Coal appears Veined or Pebbled and Peridotite appears Rough and Shiny. The luster of Coal is dull to vitreous to submetallic while that of Peridotite is shiny. Coal is available in black, brown, dark brown, grey, light to dark grey colors whereas Peridotite is available in dark greenish - grey colors. The commercial uses of Coal are alumina refineries, electricity generation, liquid fuel, manufacture of soap, solvents, dyes, plastics and fibres, paper industry and that of Peridotite are creating artwork, gemstone, jewelry, source of chromite, platinum, nickel and garnet, source of diamonds.