Home
×

Cataclasite
Cataclasite

Dolomite
Dolomite



ADD
Compare
X
Cataclasite
X
Dolomite

Cataclasite vs Dolomite

1 Definition
1.1 Definition
Cataclasite is a type of cataclastic rock that is formed by fracturing and comminution during faulting. It is normally cohesive and non-foliated, consisting of angular clasts in a finer-grained matrix
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight
1.2 History
1.2.1 Origin
Swiss Alps, Europe
Southern Alps, France
1.2.2 Discoverer
Michael Tellinger
Dolomieu
1.3 Etymology
From the Italian word cataclasi
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock
1.4 Class
Metamorphic Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic
Earthy
2.2 Color
Brown, Green, White, Yellow
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Dull and Banded
Glassy or Pearly
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes
Decorative Aggregates, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone
Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Protocataclasite, Mesocataclasite, Ultracataclasite and Foliated cataclasite
Boninite and Jasperoid
4.2 Features
Easily splits into thin plates, Is one of the oldest rock
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Cataclasiste rocks mainly form by pressure deep under the Earth's surface, from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.
5.2 Composition
5.2.1 Mineral Content
Albite, Apatite, Augite, Biotite, Calcite, Enstatite, Epidote, Feldspar, Micas, Muscovite or Illite, Pyroxene, Quartz
Clay Minerals, Pyrite, Quartz, Sulfides
5.2.2 Compound Content
Silicon Dioxide
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Mechanical Weathering
Not Applicable
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Wind Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-4
3.5-4
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
NA
Conchoidal
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Vitreous
Vitreous and Pearly
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
140.00 N/mm2
Rank: 15 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
Not Available
1
6.1.10 Specific Gravity
2.1
2.8-3
6.1.11 Transparency
Translucent to Opaque
Transparent to Translucent
6.1.12 Density
2.9-3.1 g/cm3
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Russia, Saudi Arabia, South Korea
China, India
7.1.2 Africa
Egypt, Ethiopia, Kenya, Madagascar, Morocco, South Africa
Morocco, Namibia
7.1.3 Europe
England, Finland, France, Spain, United Kingdom
Austria, Italy, Romania, Spain, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Mexico, USA
7.2.2 South America
Argentina, Colombia
Brazil, Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
New South Wales, Queensland, Yorke Peninsula

Cataclasite vs Dolomite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Cataclasite and Dolomite Reserves. Cataclasite is a type of cataclastic rock that is formed by fracturing and comminution during faulting. It is normally cohesive and non-foliated, consisting of angular clasts in a finer-grained matrix. Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Cataclasite vs Dolomite information and Cataclasite vs Dolomite characteristics in the upcoming sections.

Cataclasite vs Dolomite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Cataclasite vs Dolomite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Cataclasite and Properties of Dolomite. Learn more about Cataclasite vs Dolomite in the next section. The interior uses of Cataclasite include Decorative aggregates and Homes whereas the interior uses of Dolomite include Decorative aggregates, Homes and Interior decoration. Due to some exceptional properties of Cataclasite and Dolomite, they have various applications in construction industry. The uses of Cataclasite in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate and that of Dolomite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock.

More about Cataclasite and Dolomite

Here you can know more about Cataclasite and Dolomite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Cataclasite and Dolomite consists of mineral content and compound content. The mineral content of Cataclasite includes Albite, Apatite, Augite, Biotite, Calcite, Enstatite, Epidote, Feldspar, Micas, Muscovite or Illite, Pyroxene, Quartz and mineral content of Dolomite includes Clay Minerals, Pyrite, Quartz, Sulfides. You can also check out the list of all Metamorphic Rocks. When we have to compare Cataclasite vs Dolomite, the texture, color and appearance plays an important role in determining the type of rock. Cataclasite is available in brown, green, white, yellow colors whereas, Dolomite is available in black, brown, colourless, green, grey, pink, white colors. Appearance of Cataclasite is Dull and Banded and that of Dolomite is Glassy or Pearly. Properties of rock is another aspect for Cataclasite vs Dolomite. The hardness of Cataclasite is 3-4 and that of Dolomite is 3.5-4. The types of Cataclasite are Protocataclasite, Mesocataclasite, Ultracataclasite and Foliated cataclasite whereas types of Dolomite are Boninite and Jasperoid. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Cataclasite is black while that of Dolomite is white. The specific heat capacity of Cataclasite is Not Available and that of Dolomite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Cataclasite is heat resistant, impact resistant, pressure resistant whereas Dolomite is heat resistant, pressure resistant, wear resistant.