×

Anthracite
Anthracite

Kimberlite
Kimberlite



ADD
Compare
X
Anthracite
X
Kimberlite

Anthracite and Kimberlite

1 Definition
1.1 Definition
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.
1.2 History
1.2.1 Origin
Pennsylvania, U.S.
Kimberley, South Africa
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Greek anthrakites, from anthrax, anthrak meaning coal
From Kimberley +‎ -ite, from the name of the South African town of Kimberley where the rock was first found.
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Amorphous, Glassy
Porphyritic
2.2 Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Veined or Pebbled
Dull and Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Countertops, Decorative Aggregates, Homes, Interior Decoration
3.1.2 Exterior Uses
Not Yet Used
As Building Stone, Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Not Yet Used
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Semi-anthracite and Meta-anthracite
Basaltic Kimberlites and Micaceous Kimberlites
4.2 Features
Helps in production of Heat and Electricity, Used as fossil fuel
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
Kimberlite is an igneous rock and is the main source of diamonds. Its formation takes place deep beneath the Earth’s surface between 150 to 450 kilometres, and are erupted rapidly and violently.
5.2 Composition
5.2.1 Mineral Content
Calcite, Clay, Clay Minerals
Garnet, Olivine, Phlogopite, Pyroxene
5.2.2 Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-1.56-7
Coal
1 7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine to Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Shiny
Subvitreous to Dull
6.1.7 Compressive Strength
NANA
What Is Obsidian
0.15 450
6.1.8 Cleavage
Non-Existent
Conchoidal
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
1.1-1.42.86-2.87
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
1.25-2.5 g/cm32.95-2.96 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
1.32 kJ/Kg K0.92 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Water Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
Russia
7.1.2 Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
Angola, Botswana, Cameroon, Ethiopia, South Africa
7.1.3 Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
England, Hungary, Iceland, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada, USA
7.2.2 South America
Brazil, Chile, Colombia, Venezuela
Argentina, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Victoria
New South Wales, New Zealand, South Australia, Western Australia

All about Anthracite and Kimberlite Properties

Know all about Anthracite and Kimberlite properties here. All properties of rocks are important as they define the type of rock and its application. Anthracite belongs to Metamorphic Rocks while Kimberlite belongs to Igneous Rocks.Texture of Anthracite is Amorphous, Glassy whereas that of Kimberlite is Porphyritic. Anthracite appears Veined or Pebbled and Kimberlite appears Dull and Banded. The luster of Anthracite is shiny while that of Kimberlite is subvitreous to dull. Anthracite is available in black, brown, dark brown, grey, light to dark grey colors whereas Kimberlite is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. The commercial uses of Anthracite are alumina refineries, electricity generation, liquid fuel, manufacture of soap, solvents, dyes, plastics and fibres, paper industry and that of Kimberlite are an oil and gas reservoir, as a feed additive for livestock, gemstone, metallurgical flux, production of lime, soil conditioner, source of magnesia (mgo).