Home
×

Anthracite
Anthracite

Banded iron formation
Banded iron formation



ADD
Compare
X
Anthracite
X
Banded iron formation

Anthracite and Banded iron formation

1 Definition
1.1 Definition
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
Banded iron formation are distinctive units of sedimentary rock that are almost always of Precambrian age
1.2 History
1.2.1 Origin
Pennsylvania, U.S.
Western Australia, Minnesota
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Greek anthrakites, from anthrax, anthrak meaning coal
From its formation process
1.4 Class
Metamorphic Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Amorphous, Glassy
Banded, Trellis
2.2 Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey
Red, Reddish Brown
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Veined or Pebbled
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Decorative Aggregates, Homes
3.1.2 Exterior Uses
Not Yet Used
Paving Stone, Office Buildings
3.1.3 Other Architectural Uses
Not Yet Used
Curbing, Whetstones
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
As Dimension Stone, Used for flooring, stair treads, borders and window sills.
3.2.2 Medical Industry
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
Not Yet Used
3.3 Antiquity Uses
Not Yet Used
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
As a touchstone, Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Semi-anthracite and Meta-anthracite
Algoma-type , Lake Superior-type, Superior-type and Taconite
4.2 Features
Helps in production of Heat and Electricity, Used as fossil fuel
Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Not Yet Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Not Yet Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
The banded iron layers are formed in sea water when oxygen is released by photosynthetic cyano-bacteria. The oxygen then combines with dissolved iron in ocean to form insoluble iron oxides, which precipitated out, forming a thin layer of banded iron formation on ocean floor.
5.2 Composition
5.2.1 Mineral Content
Calcite, Clay, Clay Minerals
Hematite, Magnetite, Quartz
5.2.2 Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
Fe, Iron(III) Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Chemical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Coastal Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-1.5
5.5-6
6.1.2 Grain Size
Medium to Fine Coarse Grained
Large and Coarse Grained
6.1.3 Fracture
Conchoidal
Uneven, Splintery or Conchoidal
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Shiny
Earthy
6.1.7 Compressive Strength
What Is Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Non-Existent
Imperfect
6.1.9 Toughness
Not Available
1.5
6.1.10 Specific Gravity
1.1-1.4
5.0-5.3
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
1.25-2.5 g/cm3
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
1.32 kJ/Kg K
Rank: 4 (Overall)
3.20 kJ/Kg K
Rank: 1 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Water Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
China, India, Iran, Iraq, Oman, Russia, Saudi Arabia, Taiwan, Thailand, Vietnam
7.1.2 Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
Kenya, Morocco, South Africa, Tanzania
7.1.3 Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
Austria, France, Greece, Italy, Malta, Poland, Portugal, Serbia, Spain, Sweden, United Kingdom
7.1.4 Others
Not Yet Found
Greenland, Mid-Atlantic Ridge
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada, Mexico, USA
7.2.2 South America
Brazil, Chile, Colombia, Venezuela
Bolivia, Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Victoria
New South Wales, Queensland, South Australia, Western Australia

All about Anthracite and Banded iron formation Properties

Know all about Anthracite and Banded iron formation properties here. All properties of rocks are important as they define the type of rock and its application. Anthracite belongs to Metamorphic Rocks while Banded iron formation belongs to Sedimentary Rocks.Texture of Anthracite is Amorphous, Glassy whereas that of Banded iron formation is Banded, Trellis. Anthracite appears Veined or Pebbled and Banded iron formation appears Layered, Banded, Veined and Shiny. The luster of Anthracite is shiny while that of Banded iron formation is earthy. Anthracite is available in black, brown, dark brown, grey, light to dark grey colors whereas Banded iron formation is available in red, reddish brown colors. The commercial uses of Anthracite are alumina refineries, electricity generation, liquid fuel, manufacture of soap, solvents, dyes, plastics and fibres, paper industry and that of Banded iron formation are as a touchstone, cemetery markers, creating artwork.