Home
×

Trachyte
Trachyte

Basaltic Trachyandesite
Basaltic Trachyandesite



ADD
Compare
X
Trachyte
X
Basaltic Trachyandesite

Trachyte vs Basaltic Trachyandesite

1 Definition
1.1 Definition
Trachyte is a grey fine-grained volcanic rock which mainly consists of alkali feldspar
Basaltic Trachyandesite is an extrusive igneous rock which is a type of Basalt rock and is formed by the rapid cooling of basaltic lava exposed at or very near the Earth's surface
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Alexandre Brongniart and René Just Haüy
Unknown
1.3 Etymology
From Greek trakhus rough’ or trakhutēs roughness
From its mineral and compound content and its relation with Basalt and Andesite rock
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
2.2 Color
Black, Brown, Dark Greenish - Grey, Green, Grey, Light to Dark Grey, White
Black, Brown, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Banded
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Flooring, Homes, Interior Decoration
Floor Tiles, Homes, Hotels, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing, Whetstones
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Monuments
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
An Oil and Gas Reservoir, Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Not Available
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
4.2 Features
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
Has High structural resistance against erosion and climate, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Trachyte is an igneous volcanic rock with an aphanitic to porphyritic texture. It is the volcanic equivalent of syenite rock and forms as a result of magmatic differentiation.
Basaltic Trachandesite is a fine-grained, hard rock that forms when bits of lava shoot out of volcanoes.
5.2 Composition
5.2.1 Mineral Content
Augite, Biotite, Feldspar, Hornblade, Plagioclase, Quartz
Olivine, Plagioclase, Pyroxene
5.2.2 Compound Content
Potassium Oxide, Sodium Oxide, Silicon Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Not Available
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6
6
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
White
White to Grey
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Metallic
Not Available
6.1.7 Compressive Strength
Flint
150.00 N/mm2
Rank: 14 (Overall)
37.50 N/mm2
Rank: 27 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Not Available
6.1.9 Toughness
Not Available
2.3
6.1.10 Specific Gravity
2.7
2.8-3
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.43-2.45 g/cm3
2.9-3.1 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.84 kJ/Kg K
Rank: 15 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
India, Russia
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
South Africa
7.1.3 Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
Iceland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Brazil, Chile
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Western Australia
Not Yet Found

Trachyte vs Basaltic Trachyandesite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Trachyte and Basaltic Trachyandesite Reserves. Trachyte is a grey fine-grained volcanic rock which mainly consists of alkali feldspar. Basaltic Trachyandesite is an extrusive igneous rock which is a type of Basalt rock and is formed by the rapid cooling of basaltic lava exposed at or very near the Earth's surface. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Trachyte vs Basaltic Trachyandesite information and Trachyte vs Basaltic Trachyandesite characteristics in the upcoming sections.

Trachyte vs Basaltic Trachyandesite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Trachyte vs Basaltic Trachyandesite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Trachyte and Properties of Basaltic Trachyandesite. Learn more about Trachyte vs Basaltic Trachyandesite in the next section. The interior uses of Trachyte include Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Basaltic Trachyandesite include Floor tiles, Homes, Hotels and Kitchens. Due to some exceptional properties of Trachyte and Basaltic Trachyandesite, they have various applications in construction industry. The uses of Trachyte in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Basaltic Trachyandesite include As dimension stone, Cobblestones, Rail track ballast, Roadstone.

More about Trachyte and Basaltic Trachyandesite

Here you can know more about Trachyte and Basaltic Trachyandesite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Trachyte and Basaltic Trachyandesite consists of mineral content and compound content. The mineral content of Trachyte includes Augite, Biotite, Feldspar, Hornblade, Plagioclase, Quartz and mineral content of Basaltic Trachyandesite includes Olivine, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Trachyte vs Basaltic Trachyandesite, the texture, color and appearance plays an important role in determining the type of rock. Trachyte is available in black, brown, dark greenish - grey, green, grey, light to dark grey, white colors whereas, Basaltic Trachyandesite is available in black, brown, light to dark grey colors. Appearance of Trachyte is Banded and that of Basaltic Trachyandesite is Dull and Soft. Properties of rock is another aspect for Trachyte vs Basaltic Trachyandesite. Hardness of Trachyte and Basaltic Trachyandesite is 6. The types of Trachyte are Not Available whereas types of Basaltic Trachyandesite are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Trachyte is white while that of Basaltic Trachyandesite is white to grey. The specific heat capacity of Trachyte is Not Available and that of Basaltic Trachyandesite is 0.84 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Trachyte is heat resistant, impact resistant, wear resistant whereas Basaltic Trachyandesite is heat resistant, pressure resistant, wear resistant.

Let Others Know
×