Home
×

Porphyry
Porphyry

Ganister
Ganister



ADD
Compare
X
Porphyry
X
Ganister

Porphyry vs Ganister

Add ⊕
1 Definition
1.1 Definition
Porphyry is a reddish-brown to purple igneous rock containing large phenocrysts of various minerals embedded in a fine-grained matrix
A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.
1.2 History
1.2.1 Origin
Egypt
England
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Old French porfire, from Italian porfiro and in some cases directly from Latin porphyrites
From gan′is-ter i.e a hard, close-grained siliceous stone, often forming the stratum which underlies a coal-seam
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Porphyritic
Clastic, Granular, Rough
2.2 Color
Black, Brown, Colourless, Green, Grey, Red, Rust, White
Beige, Black, Brown, Colourless, Cream, Dark Brown, Green, Grey, Light Green, Light to Dark Grey, Pink, Red, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Dull
Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
Garden Decoration, Paving Stone
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Construction Aggregate
Cement Manufacture, Construction Aggregate, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone, Jewelry
An Oil and Gas Reservoir, In aquifers, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones
4 Types
4.1 Types
Rhomb Porphyry
Not Available
4.2 Features
Generally rough to touch, Is one of the oldest rock, Surfaces are often shiny
Available in Lots of Colors and Patterns, Generally rough to touch, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Porphyry is formed in two stages: the magma cools slowly deep within the crust or the magma is cools rapidly as it erupts from a volcano, creating small grains that are usually invisible to naked eye.
Ganisters are formed by the destruction of easily weathered minerals mainly feldspar, within the surface horizon of soil by soil-forming processes.
5.2 Composition
5.2.1 Mineral Content
Biotite, Chert, Feldspar, Garnet, Graphite, Quartz, Silica
Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Not Registered
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
6-7
6.1.2 Grain Size
Fine Grained
Coarse or Fine
6.1.3 Fracture
Irregular
Splintery
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Dull
Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
95.00 N/mm2
Rank: 20 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Imperfect
Perfect
6.1.9 Toughness
1.7
2.6
6.1.10 Specific Gravity
2.5-4
2.2-2.8
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.5-2.52 g/cm3
2.2-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, Kazakhstan, South Korea, Thailand, Turkey, Vietnam
China, India, Kazakhstan, Mongolia, Russia, Uzbekistan
7.1.2 Africa
Egypt, Ethiopia, Ghana, South Africa
Namibia, Nigeria, South Africa
7.1.3 Europe
Finland, France, Germany, Great Britain, Hungary, Iceland, Ireland, Italy, Netherlands, Norway, Romania, Sweden, Switzerland
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
7.1.4 Others
Greenland
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Cuba, Jamaica, USA
Canada, USA
7.2.2 South America
Bolivia, Brazil, Colombia, Ecuador, Paraguay
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Western Australia
New South Wales, New Zealand

Porphyry vs Ganister Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Porphyry and Ganister Reserves. Porphyry is a reddish-brown to purple igneous rock containing large phenocrysts of various minerals embedded in a fine-grained matrix. A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Porphyry vs Ganister information and Porphyry vs Ganister characteristics in the upcoming sections.

Porphyry vs Ganister Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Porphyry vs Ganister characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Porphyry and Properties of Ganister. Learn more about Porphyry vs Ganister in the next section. The interior uses of Porphyry include Decorative aggregates and Interior decoration whereas the interior uses of Ganister include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Porphyry and Ganister, they have various applications in construction industry. The uses of Porphyry in construction industry include Construction aggregate and that of Ganister include Cement manufacture, Construction aggregate, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar.

More about Porphyry and Ganister

Here you can know more about Porphyry and Ganister. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Porphyry and Ganister consists of mineral content and compound content. The mineral content of Porphyry includes Biotite, Chert, Feldspar, Garnet, Graphite, Quartz, Silica and mineral content of Ganister includes Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Porphyry vs Ganister, the texture, color and appearance plays an important role in determining the type of rock. Porphyry is available in black, brown, colourless, green, grey, red, rust, white colors whereas, Ganister is available in beige, black, brown, colourless, cream, dark brown, green, grey, light green, light to dark grey, pink, red, white, yellow colors. Appearance of Porphyry is Dull and that of Ganister is Rough. Properties of rock is another aspect for Porphyry vs Ganister. Hardness of Porphyry and Ganister is 6-7. The types of Porphyry are Rhomb Porphyry whereas types of Ganister are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Porphyry and Ganister is white. The specific heat capacity of Porphyry is Not Available and that of Ganister is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Porphyry is heat resistant, impact resistant whereas Ganister is heat resistant, impact resistant, pressure resistant.