Home
×

Porphyry
Porphyry

Adamellite
Adamellite



ADD
Compare
X
Porphyry
X
Adamellite

Porphyry vs Adamellite

1 Definition
1.1 Definition
Porphyry is a reddish-brown to purple igneous rock containing large phenocrysts of various minerals embedded in a fine-grained matrix
Adamellite is a coarse-grained porphyritic igneous rock, a variety of Monzogranite and dominated by phenocrysts of orthoclase in a granular groundmass of perthite, plagioclase and quartz
1.2 History
1.2.1 Origin
Egypt
Italy
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Old French porfire, from Italian porfiro and in some cases directly from Latin porphyrites
From German adamellit and from Monte Adamello, a mountain in Italy, its locality
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Porphyritic
Porphyritic
2.2 Color
Black, Brown, Colourless, Green, Grey, Red, Rust, White
Black, Grey, Orange, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Homes, Hotels, Kitchens, Stair Treads
3.1.2 Exterior Uses
Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Bridges, Paving Stone, Near Swimming Pools, Office Buildings, Resorts
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Construction Aggregate
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone, Jewelry
Curling, Gemstone, Laboratory bench tops, Tombstones
4 Types
4.1 Types
Rhomb Porphyry
Not Available
4.2 Features
Generally rough to touch, Is one of the oldest rock, Surfaces are often shiny
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Porphyry is formed in two stages: the magma cools slowly deep within the crust or the magma is cools rapidly as it erupts from a volcano, creating small grains that are usually invisible to naked eye.
Adamellite is a type of Igneous rock which is formed through the cooling and solidification of lava or magma and is a variety of Monzogranite.
5.2 Composition
5.2.1 Mineral Content
Biotite, Chert, Feldspar, Garnet, Graphite, Quartz, Silica
Apatite, Biotite, Chlorite, Orthoclase, Perthite, Plagioclase, Quartz, Titanite, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Not Registered
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Chemical Erosion, Glacier Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
6-7
6.1.2 Grain Size
Fine Grained
Coarse Grained
6.1.3 Fracture
Irregular
Not Available
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Dull
Dull to Grainy with Sporadic parts Pearly and Vitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
175.00 N/mm2
Rank: 13 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Imperfect
Not Available
6.1.9 Toughness
1.7
Not Available
6.1.10 Specific Gravity
2.5-4
2.6-2.7
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.5-2.52 g/cm3
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.79 kJ/Kg K
Rank: 16 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, Kazakhstan, South Korea, Thailand, Turkey, Vietnam
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Egypt, Ethiopia, Ghana, South Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Finland, France, Germany, Great Britain, Hungary, Iceland, Ireland, Italy, Netherlands, Norway, Romania, Sweden, Switzerland
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Cuba, Jamaica, USA
Canada, USA
7.2.2 South America
Bolivia, Brazil, Colombia, Ecuador, Paraguay
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Western Australia
Not Yet Found

Porphyry vs Adamellite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Porphyry and Adamellite Reserves. Porphyry is a reddish-brown to purple igneous rock containing large phenocrysts of various minerals embedded in a fine-grained matrix. Adamellite is a coarse-grained porphyritic igneous rock, a variety of Monzogranite and dominated by phenocrysts of orthoclase in a granular groundmass of perthite, plagioclase and quartz. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Porphyry vs Adamellite information and Porphyry vs Adamellite characteristics in the upcoming sections.

Porphyry vs Adamellite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Porphyry vs Adamellite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Porphyry and Properties of Adamellite. Learn more about Porphyry vs Adamellite in the next section. The interior uses of Porphyry include Decorative aggregates and Interior decoration whereas the interior uses of Adamellite include Bathrooms, Countertops, Decorative aggregates, Entryways, Floor tiles, Homes, Hotels, Kitchens and Stair treads. Due to some exceptional properties of Porphyry and Adamellite, they have various applications in construction industry. The uses of Porphyry in construction industry include Construction aggregate and that of Adamellite include As dimension stone.

More about Porphyry and Adamellite

Here you can know more about Porphyry and Adamellite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Porphyry and Adamellite consists of mineral content and compound content. The mineral content of Porphyry includes Biotite, Chert, Feldspar, Garnet, Graphite, Quartz, Silica and mineral content of Adamellite includes Apatite, Biotite, Chlorite, Orthoclase, Perthite, Plagioclase, Quartz, Titanite, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Porphyry vs Adamellite, the texture, color and appearance plays an important role in determining the type of rock. Porphyry is available in black, brown, colourless, green, grey, red, rust, white colors whereas, Adamellite is available in black, grey, orange, pink, white colors. Appearance of Porphyry is Dull and that of Adamellite is Veined or Pebbled. Properties of rock is another aspect for Porphyry vs Adamellite. Hardness of Porphyry and Adamellite is 6-7. The types of Porphyry are Rhomb Porphyry whereas types of Adamellite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Porphyry and Adamellite is white. The specific heat capacity of Porphyry is Not Available and that of Adamellite is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Porphyry is heat resistant, impact resistant whereas Adamellite is heat resistant, wear resistant.

Let Others Know
×