Home
×

Peridotite
Peridotite

Tuff
Tuff



ADD
Compare
X
Peridotite
X
Tuff

Peridotite vs Tuff

Add ⊕
1 Definition
1.1 Definition
Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle
Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption
1.2 History
1.2.1 Origin
Pike County, U.S
Italy
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From French, from peridot +‎ -ite
From a Latin word tophous then in Italian tufo and finally tuff
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Clastic, Pyroclastic
2.2 Color
Dark Greenish - Grey
Brown, Grey, Yellow
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough and Shiny
Dull, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones
Building houses or walls, Construction Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone, Jewelry, Source of Chromite, Platinum, Nickel and Garnet, Source of Diamonds
Creating Artwork
4 Types
4.1 Types
Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite
Welded tuff, Rhyolitic tuff, Basaltic tuff, Trachyte tuff, Andesitic tuff and Ignimbrite.
4.2 Features
Constitutes upper part of the Earth's mantle, Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
Always found as volcanic pipes over deep continental crust
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Easter Island in the Polynesian Triangle, Pacific Ocean
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Peridotites can be formed in two ways: as mantle rocks formed during the accretion and differentiation of the Earth or as cumulate rocks formed by precipitation of olivine and pyroxenes from basaltic magmas.
Tuff is formed when large masses of ash and sand which are mixed with hot gases are ejected by a volcano and avalanche rapidly down its slopes.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene
Calcite, Chlorite
5.2.2 Compound Content
Ca, Fe, Mg, Potassium, Silicon Dioxide, Sodium, Titanium Dioxide
Hydrogen Sulfide, Sulfur Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
4-6
6.1.2 Grain Size
Coarse Grained
Fine Grained
6.1.3 Fracture
Irregular
Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Shiny
Vitreous to Dull
6.1.7 Compressive Strength
Flint
107.55 N/mm2
Rank: 19 (Overall)
243.80 N/mm2
Rank: 5 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Imperfect
Not Available
6.1.9 Toughness
2.1
Not Available
6.1.10 Specific Gravity
3-3.01
2.73
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
3.1-3.4 g/cm3
1-1.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
1.26 kJ/Kg K
Rank: 5 (Overall)
0.20 kJ/Kg K
Rank: 25 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Indonesia, Kazakhstan, Russia, South Korea, Thailand, Turkey
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen
7.1.2 Africa
Morocco, South Africa
Cameroon, Cape Verde, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Uganda
7.1.3 Europe
Finland, France, Georgia, Germany, Great Britain, Italy, Kazakhstan, Netherlands, Norway, Spain, Switzerland, Venezuela
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Hawaii Islands
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Costa Rica, Panama, USA
7.2.2 South America
Brazil
Argentina, Bolivia, Brazil, Chile, Ecuador, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
Central Australia, Western Australia

Peridotite vs Tuff Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Peridotite and Tuff Reserves. Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle. Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Peridotite vs Tuff information and Peridotite vs Tuff characteristics in the upcoming sections.

Peridotite vs Tuff Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Peridotite vs Tuff characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Peridotite and Properties of Tuff. Learn more about Peridotite vs Tuff in the next section. The interior uses of Peridotite include Decorative aggregates and Interior decoration whereas the interior uses of Tuff include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Peridotite and Tuff, they have various applications in construction industry. The uses of Peridotite in construction industry include As dimension stone, Cobblestones and that of Tuff include Building houses or walls, Construction aggregate.

More about Peridotite and Tuff

Here you can know more about Peridotite and Tuff. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Peridotite and Tuff consists of mineral content and compound content. The mineral content of Peridotite includes Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene and mineral content of Tuff includes Calcite, Chlorite. You can also check out the list of all Igneous Rocks. When we have to compare Peridotite vs Tuff, the texture, color and appearance plays an important role in determining the type of rock. Peridotite is available in dark greenish - grey colors whereas, Tuff is available in brown, grey, yellow colors. Appearance of Peridotite is Rough and Shiny and that of Tuff is Dull, Vesicular and Foilated. Properties of rock is another aspect for Peridotite vs Tuff. The hardness of Peridotite is 5.5-6 and that of Tuff is 4-6. The types of Peridotite are Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite whereas types of Tuff are Welded tuff, Rhyolitic tuff, Basaltic tuff, Trachyte tuff, Andesitic tuff and Ignimbrite.. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Peridotite and Tuff is white. The specific heat capacity of Peridotite is 1.26 kJ/Kg K and that of Tuff is 0.20 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Peridotite is heat resistant, pressure resistant, wear resistant whereas Tuff is heat resistant, impact resistant, pressure resistant, wear resistant.