Home
×

Obsidian
Obsidian

Ijolite
Ijolite



ADD
Compare
X
Obsidian
X
Ijolite

Obsidian vs Ijolite

Add ⊕
1 Definition
1.1 Definition
Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimum crystal growth
Ijolite is an intrusive igneous rock which is composed mainly of nepheline and an alkali pyroxene, usually aegirine-augite
1.2 History
1.2.1 Origin
Ethiopia
Finland, Europe
1.2.2 Discoverer
Obsius
Unknown
1.3 Etymology
From Latin obsidianus, misprint of Obsianus (lapis) (stone) of Obsius
From the first syllable of the Finnish words Ii-vaara, Iijoki, &c. commonly used geographical names in Finland, and the Gr. Xiflos, a stone
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy
Earthy, Granular
2.2 Color
Black, Blue, Brown, Green, Orange, Red, Tan, Yellow
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Shiny
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Interior Decoration, Kitchens
3.1.2 Exterior Uses
Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
Arrowheads, Cutting Tool, Knives, Scrapers, Spear Points
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Surgery
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Mirror, Used in aquariums
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Fireworks Obsidian, Mahogany, Sheen Obsidian, Snowflake obsidian and Velvet Peacock Obsidian
Not Available
4.2 Features
Blocks negativity, Helps to protect against depression
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
When the lava is released from volcano, it undergoes a very rapid cooling which freezes the mechanisms of crystallization. The result is a volcanic glass with a uniform smooth texture.
Ijolite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Not Available
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-5.5
5.5-6
6.1.2 Grain Size
Not Applicable
Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal to Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Vitreous
Greasy to Dull
6.1.7 Compressive Strength
Flint
0.15 N/mm2
Rank: 33 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Non-Existent
Poor
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.6-2.7
2.6-2.76
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.6 g/cm3
2.6 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Indonesia, Japan, Russia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Kenya
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Greece, Hungary, Iceland, Italy, Turkey
England, Finland, Germany, Great Britain, Greece, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada, USA
7.2.2 South America
Argentina, Chile, Ecuador, Peru
Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand
New Zealand, Queensland, Western Australia

Obsidian vs Ijolite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Obsidian and Ijolite Reserves. Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimum crystal growth. Ijolite is an intrusive igneous rock which is composed mainly of nepheline and an alkali pyroxene, usually aegirine-augite. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Obsidian vs Ijolite information and Obsidian vs Ijolite characteristics in the upcoming sections.

Obsidian vs Ijolite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Obsidian vs Ijolite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Obsidian and Properties of Ijolite. Learn more about Obsidian vs Ijolite in the next section. The interior uses of Obsidian include Decorative aggregates and Interior decoration whereas the interior uses of Ijolite include Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Interior decoration and Kitchens. Due to some exceptional properties of Obsidian and Ijolite, they have various applications in construction industry. The uses of Obsidian in construction industry include Arrowheads, Cutting tool, Knives, Scrapers, Spear points and that of Ijolite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Obsidian and Ijolite

Here you can know more about Obsidian and Ijolite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Obsidian and Ijolite consists of mineral content and compound content. The mineral content of Obsidian is not available and mineral content of Ijolite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Igneous Rocks. When we have to compare Obsidian vs Ijolite, the texture, color and appearance plays an important role in determining the type of rock. Obsidian is available in black, blue, brown, green, orange, red, tan, yellow colors whereas, Ijolite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Obsidian is Shiny and that of Ijolite is Banded and Foilated. Properties of rock is another aspect for Obsidian vs Ijolite. The hardness of Obsidian is 5-5.5 and that of Ijolite is 5.5-6. The types of Obsidian are Fireworks Obsidian, Mahogany, Sheen Obsidian, Snowflake obsidian and Velvet Peacock Obsidian whereas types of Ijolite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Obsidian and Ijolite is white. The specific heat capacity of Obsidian is 0.92 kJ/Kg K and that of Ijolite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Obsidian is heat resistant, impact resistant whereas Ijolite is heat resistant, impact resistant, wear resistant.