Home
×

Nepheline Syenite
Nepheline Syenite

Metapelite
Metapelite



ADD
Compare
X
Nepheline Syenite
X
Metapelite

Nepheline Syenite vs Metapelite

1 Definition
1.1 Definition
Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz
Metapelite is an old and currently not widely used field geological term for a clay rich fine-grained clastic sediment or sedimentary rock, i.e. mud or a mudstone
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From origin of a Palaeozoic nepheline syenite from northern Shanxi Province, China
From Pelos or clay in Greek
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular
Foliated
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Dark Greenish - Grey, Green, Light Green, Light Greenish Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
Cement Manufacture, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Borolanite and Litchfieldite
Not Available
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Easily splits into thin plates, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Nepheline Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Metapelite is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Albite, Chlorite, Quartz
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, MgO
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Impact Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
5-6
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal to Uneven
Fibrous
6.1.4 Streak
White
Unknown
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Greasy to Dull
Earthy
6.1.7 Compressive Strength
Flint
150.00 N/mm2
Rank: 14 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Poor
Not Available
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.6
3.4-3.7
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.6 g/cm3
0-300 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.72 kJ/Kg K
Rank: 20 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
Not Yet Found
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Western Africa
7.1.3 Europe
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden
United Kingdom
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Not Available
7.2.2 South America
Brazil, Chile, Colombia, Uruguay, Venezuela
Brazil, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia
Central Australia, Western Australia

Nepheline Syenite vs Metapelite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Nepheline Syenite and Metapelite Reserves. Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz. Metapelite is an old and currently not widely used field geological term for a clay rich fine-grained clastic sediment or sedimentary rock, i.e. mud or a mudstone. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Nepheline Syenite vs Metapelite information and Nepheline Syenite vs Metapelite characteristics in the upcoming sections.

Nepheline Syenite vs Metapelite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Nepheline Syenite vs Metapelite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Nepheline Syenite and Properties of Metapelite. Learn more about Nepheline Syenite vs Metapelite in the next section. The interior uses of Nepheline Syenite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Metapelite include Decorative aggregates and Interior decoration. Due to some exceptional properties of Nepheline Syenite and Metapelite, they have various applications in construction industry. The uses of Nepheline Syenite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Metapelite include Cement manufacture, Construction aggregate, For road aggregate.

More about Nepheline Syenite and Metapelite

Here you can know more about Nepheline Syenite and Metapelite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Nepheline Syenite and Metapelite consists of mineral content and compound content. The mineral content of Nepheline Syenite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Metapelite includes Albite, Chlorite, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Nepheline Syenite vs Metapelite, the texture, color and appearance plays an important role in determining the type of rock. Nepheline Syenite is available in brown, buff, cream, green, grey, pink, white colors whereas, Metapelite is available in dark greenish - grey, green, light green, light greenish grey colors. Appearance of Nepheline Syenite is Banded and Foilated and that of Metapelite is Banded. Properties of rock is another aspect for Nepheline Syenite vs Metapelite. The hardness of Nepheline Syenite is 5.5-6 and that of Metapelite is 5-6. The types of Nepheline Syenite are Borolanite and Litchfieldite whereas types of Metapelite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Nepheline Syenite is white while that of Metapelite is unknown. The specific heat capacity of Nepheline Syenite is Not Available and that of Metapelite is 0.72 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Nepheline Syenite is heat resistant, impact resistant, wear resistant whereas Metapelite is heat resistant, impact resistant, pressure resistant.