Home
×

Jasperoid
Jasperoid

Itacolumite
Itacolumite



ADD
Compare
X
Jasperoid
X
Itacolumite

Jasperoid vs Itacolumite

1 Definition
1.1 Definition
Jasperoid is a rare, peculiar type of metasomatic alteration of rocks
A yellow sandstone which is flexible when cut into thin strips
1.2 History
1.2.1 Origin
USA
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From silica, the main mineral content of Jasperoid
From the name of a mountain range where it was found; Itacolumi mountain in Brazil
1.4 Class
Sedimentary Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Clastic, Granular, Rough
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Beige, Black, Brown, Colourless, Cream, Dark Brown, Green, Grey, Light Green, Light to Dark Grey, Pink, Red, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Glassy or Pearly
Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration, Kitchens
3.1.2 Exterior Uses
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
Cement Manufacture, Construction Aggregate, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
An Oil and Gas Reservoir, In aquifers, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
Available in Lots of Colors and Patterns, Generally rough to touch, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Present
5 Formation
5.1 Formation
Jasperoid is a rare and peculiar type of metasomatic alteration of rocks. It is formed by extreme alteration of wall rocks within a shear zone which may occur in sediments, andesites, trachytes and basalts.
Itacolumite is a sedimentary rock which forms from cemented sand-sized clasts and is a type of sandstone.
5.2 Composition
5.2.1 Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides
Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz
5.2.2 Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
6-7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Coarse or Fine
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Vitreous and Pearly
Dull
6.1.7 Compressive Strength
Flint
140.00 N/mm2
Rank: 15 (Overall)
95.00 N/mm2
Rank: 20 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Perfect
6.1.9 Toughness
1
2.6
6.1.10 Specific Gravity
2.8-3
2.2-2.8
6.1.11 Transparency
Transparent to Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.2-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
China, India, Kazakhstan, Mongolia, Russia, Uzbekistan
7.1.2 Africa
Morocco, Namibia
Namibia, Nigeria, South Africa
7.1.3 Europe
Austria, Italy, Romania, Spain, Switzerland
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Mexico, USA
Canada, USA
7.2.2 South America
Brazil, Colombia
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Yorke Peninsula
New South Wales, New Zealand

Jasperoid vs Itacolumite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Jasperoid and Itacolumite Reserves. Jasperoid is a rare, peculiar type of metasomatic alteration of rocks. A yellow sandstone which is flexible when cut into thin strips. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Jasperoid vs Itacolumite information and Jasperoid vs Itacolumite characteristics in the upcoming sections.

Jasperoid vs Itacolumite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Jasperoid vs Itacolumite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Jasperoid and Properties of Itacolumite. Learn more about Jasperoid vs Itacolumite in the next section. The interior uses of Jasperoid include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Itacolumite include Decorative aggregates, Floor tiles, Homes, Interior decoration and Kitchens. Due to some exceptional properties of Jasperoid and Itacolumite, they have various applications in construction industry. The uses of Jasperoid in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock and that of Itacolumite include Cement manufacture, Construction aggregate, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar.

More about Jasperoid and Itacolumite

Here you can know more about Jasperoid and Itacolumite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Jasperoid and Itacolumite consists of mineral content and compound content. The mineral content of Jasperoid includes Clay Minerals, Pyrite, Quartz, Sulfides and mineral content of Itacolumite includes Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz. You can also check out the list of all Sedimentary Rocks. When we have to compare Jasperoid vs Itacolumite, the texture, color and appearance plays an important role in determining the type of rock. Jasperoid is available in black, brown, colourless, green, grey, pink, white colors whereas, Itacolumite is available in beige, black, brown, colourless, cream, dark brown, green, grey, light green, light to dark grey, pink, red, white, yellow colors. Appearance of Jasperoid is Glassy or Pearly and that of Itacolumite is Rough. Properties of rock is another aspect for Jasperoid vs Itacolumite. The hardness of Jasperoid is 3.5-4 and that of Itacolumite is 6-7. The types of Jasperoid are Not Available whereas types of Itacolumite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Jasperoid and Itacolumite is white. The specific heat capacity of Jasperoid is 0.92 kJ/Kg K and that of Itacolumite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Jasperoid is heat resistant, pressure resistant, wear resistant whereas Itacolumite is heat resistant, impact resistant, pressure resistant.