Home
×

Jasperoid
Jasperoid

Chert
Chert



ADD
Compare
X
Jasperoid
X
Chert

Jasperoid vs Chert

Add ⊕
1 Definition
1.1 Definition
Jasperoid is a rare, peculiar type of metasomatic alteration of rocks
Chert is a hard, dark, opaque sedimentary rock which is composed of silica with an amorphous fine-grained texture
1.2 History
1.2.1 Origin
USA
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From silica, the main mineral content of Jasperoid
From flint-like quartz, 1670s, of unknown origin- a local term, which has been taken into geological use
1.4 Class
Sedimentary Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Banded, Rough
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Brown, Green, Grey, Red, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Glassy or Pearly
Glassy or Pearly
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Decorative Aggregates, Homes
3.1.2 Exterior Uses
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
Arrowheads, Construction Aggregate, Cutting Tool, Spear Points
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Monuments
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Creating Artwork, Gemstone, In fire-starting tools, Jewelry, To ignite fire, Used in flintlock firearms
4 Types
4.1 Types
Not Available
Flint, Jasper, Radiolarite, Common Chert, Chalcedony, Agate, Onyx, Opal, Magadi-type Chert, Porcelanite, Siliceous Sinter
4.2 Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
Clasts are smooth to touch, Easily splits into thin plates, Has High structural resistance against erosion and climate
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Present
Present
5 Formation
5.1 Formation
Jasperoid is a rare and peculiar type of metasomatic alteration of rocks. It is formed by extreme alteration of wall rocks within a shear zone which may occur in sediments, andesites, trachytes and basalts.
Chert forms when microcrystals of silicon dioxide grow within soft sediments that become limestone or chalk. The chert formation can be either of chemical or biological origin.
5.2 Composition
5.2.1 Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides
Quartz, Silicon
5.2.2 Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Not Applicable
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
6.5-7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Very fine-grained
6.1.3 Fracture
Conchoidal
Uneven, Splintery or Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Vitreous and Pearly
Waxy and Dull
6.1.7 Compressive Strength
Flint
140.00 N/mm2
Rank: 15 (Overall)
450.00 N/mm2
Rank: 1 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Non-Existent
6.1.9 Toughness
1
1.5
6.1.10 Specific Gravity
2.8-3
2.5-2.8
6.1.11 Transparency
Transparent to Translucent
Translucent to Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.7 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.74 kJ/Kg K
Rank: 19 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
China, India, Iran, Japan, Oman, Russia, Saudi Arabia, Taiwan, Thailand, Vietnam
7.1.2 Africa
Morocco, Namibia
Kenya, Morocco, South Africa, Tanzania
7.1.3 Europe
Austria, Italy, Romania, Spain, Switzerland
Austria, France, Greece, Italy, Malta, Poland, Portugal, Serbia, Spain, Sweden, United Kingdom
7.1.4 Others
Not Yet Found
Greenland, Mid-Atlantic Ridge
7.2 Deposits in Western Continents
7.2.1 North America
Mexico, USA
Canada, Mexico, USA
7.2.2 South America
Brazil, Colombia
Bolivia, Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Yorke Peninsula
New South Wales, Queensland, South Australia, Western Australia

Jasperoid vs Chert Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Jasperoid and Chert Reserves. Jasperoid is a rare, peculiar type of metasomatic alteration of rocks. Chert is a hard, dark, opaque sedimentary rock which is composed of silica with an amorphous fine-grained texture. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Jasperoid vs Chert information and Jasperoid vs Chert characteristics in the upcoming sections.

Jasperoid vs Chert Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Jasperoid vs Chert characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Jasperoid and Properties of Chert. Learn more about Jasperoid vs Chert in the next section. The interior uses of Jasperoid include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Chert include Decorative aggregates and Homes. Due to some exceptional properties of Jasperoid and Chert, they have various applications in construction industry. The uses of Jasperoid in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock and that of Chert include Arrowheads, Construction aggregate, Cutting tool, Spear points.

More about Jasperoid and Chert

Here you can know more about Jasperoid and Chert. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Jasperoid and Chert consists of mineral content and compound content. The mineral content of Jasperoid includes Clay Minerals, Pyrite, Quartz, Sulfides and mineral content of Chert includes Quartz, Silicon. You can also check out the list of all Sedimentary Rocks. When we have to compare Jasperoid vs Chert, the texture, color and appearance plays an important role in determining the type of rock. Jasperoid is available in black, brown, colourless, green, grey, pink, white colors whereas, Chert is available in black, brown, green, grey, red, white colors. Appearance of Jasperoid is Glassy or Pearly and that of Chert is Glassy or Pearly. Properties of rock is another aspect for Jasperoid vs Chert. The hardness of Jasperoid is 3.5-4 and that of Chert is 6.5-7. The types of Jasperoid are Not Available whereas types of Chert are Flint, Jasper, Radiolarite, Common Chert, Chalcedony, Agate, Onyx, Opal, Magadi-type Chert, Porcelanite, Siliceous Sinter. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Jasperoid and Chert is white. The specific heat capacity of Jasperoid is 0.92 kJ/Kg K and that of Chert is 0.74 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Jasperoid is heat resistant, pressure resistant, wear resistant whereas Chert is heat resistant, impact resistant, pressure resistant, wear resistant.

Let Others Know
×