Home
×

Gossan
Gossan

Rapakivi Granite
Rapakivi Granite



ADD
Compare
X
Gossan
X
Rapakivi Granite

Gossan vs Rapakivi Granite

1 Definition
1.1 Definition
Gossan is intensely oxidized, weathered or decomposed rock, usually the upper and exposed part of an ore deposit or mineral vein.
Rapakivi Granite is a hornblende-biotite Granite containing large rounded crystals of orthoclase which are mantled with oligoclase
1.2 History
1.2.1 Origin
Indonesia
Finland, Europe
1.2.2 Discoverer
Cornish Gossen
Jakob Sederholm
1.3 Etymology
From Cornish gossen from gos, blood from Old Cornish guit
From Finnish Rapakivi which stands for crumbly rock
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Rough, Sandy
Granular, Phaneritic
2.2 Color
Brown, Brown- Black, Gold, Green, Rust
Black, Grey, Orange, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull and Banded
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Interior Decoration
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Office Buildings, Paving Stone, Resorts
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Gemstone
Cemetery Markers, Commemorative Tablets, Creating Artwork, Curling, Laboratory bench tops, Tombstones
4 Types
4.1 Types
Translocated gossan and Leakage gossan
Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite
4.2 Features
Clasts are smooth to touch, Easily splits into thin plates
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Earth movements can cause rocks to be either deeply buried or squeezed and hence the rocks are heated and put under great pressure.
Granite is an igneous rock which is very hard, crystalline and is visibly homogeneous in texture and forms by melting of continental rocks
5.2 Composition
5.2.1 Mineral Content
Apatite, Augite, Biotite, Bronzite, Calcite, Chert, Epidote, Feldspar, Hornblende, Micas, Plagioclase, Pyroxene, Quartz, Sulfides, Zircon
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
5.2.2 Compound Content
Aluminium Oxide, CaO, Fe, FeO, Silicon Dioxide, Sulphur
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Sea Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
4-5
6-7
6.1.2 Grain Size
Fine to Medium Grained
Large and Coarse Grained
6.1.3 Fracture
Conchoidal
Not Available
6.1.4 Streak
White to Grey
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Metallic
Dull to Grainy with Sporadic parts Pearly and Vitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
175.00 N/mm2
Rank: 13 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Not Available
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.0
2.6-2.7
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
Not Available
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.24 kJ/Kg K
Rank: 24 (Overall)
0.79 kJ/Kg K
Rank: 16 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Indonesia, Russia, Singapore, South Korea
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Cape Verde, Ethiopia, Ghana, South Africa, Western Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Albania, France, Germany, Great Britain, United Kingdom
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Brazil, Colombia, Ecuador
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, South Australia, Western Australia
Not Yet Found

Gossan vs Rapakivi Granite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Gossan and Rapakivi Granite Reserves. Gossan is intensely oxidized, weathered or decomposed rock, usually the upper and exposed part of an ore deposit or mineral vein.. Rapakivi Granite is a hornblende-biotite Granite containing large rounded crystals of orthoclase which are mantled with oligoclase. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Gossan vs Rapakivi Granite information and Gossan vs Rapakivi Granite characteristics in the upcoming sections.

Gossan vs Rapakivi Granite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Gossan vs Rapakivi Granite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Gossan and Properties of Rapakivi Granite. Learn more about Gossan vs Rapakivi Granite in the next section. The interior uses of Gossan include Countertops, Decorative aggregates and Interior decoration whereas the interior uses of Rapakivi Granite include Bathrooms, Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads. Due to some exceptional properties of Gossan and Rapakivi Granite, they have various applications in construction industry. The uses of Gossan in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate and that of Rapakivi Granite include As dimension stone.

More about Gossan and Rapakivi Granite

Here you can know more about Gossan and Rapakivi Granite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Gossan and Rapakivi Granite consists of mineral content and compound content. The mineral content of Gossan includes Apatite, Augite, Biotite, Bronzite, Calcite, Chert, Epidote, Feldspar, Hornblende, Micas, Plagioclase, Pyroxene, Quartz, Sulfides, Zircon and mineral content of Rapakivi Granite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Metamorphic Rocks. When we have to compare Gossan vs Rapakivi Granite, the texture, color and appearance plays an important role in determining the type of rock. Gossan is available in brown, brown- black, gold, green, rust colors whereas, Rapakivi Granite is available in black, grey, orange, pink, white colors. Appearance of Gossan is Dull and Banded and that of Rapakivi Granite is Veined or Pebbled. Properties of rock is another aspect for Gossan vs Rapakivi Granite. The hardness of Gossan is 4-5 and that of Rapakivi Granite is 6-7. The types of Gossan are Translocated gossan and Leakage gossan whereas types of Rapakivi Granite are Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Gossan is white to grey while that of Rapakivi Granite is white. The specific heat capacity of Gossan is 0.24 kJ/Kg K and that of Rapakivi Granite is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Gossan is heat resistant, impact resistant, pressure resistant whereas Rapakivi Granite is heat resistant, wear resistant.