Home
×

Felsite
Felsite

Trondhjemite
Trondhjemite



ADD
Compare
X
Felsite
X
Trondhjemite

Felsite vs Trondhjemite

1 Definition
1.1 Definition
Felsite is a very fine grained volcanic rock that may or may not contain larger crystals and light colored rock that typically requires petrographic examination or chemical analysis for more precise definition
Trondhjemite is a leucocratic (light-colored) intrusive igneous rock. It is a variety of tonalite in which the plagioclase is mostly in the form of oligoclase. Trondhjemites are sometimes known as plagiogranites.
1.2 History
1.2.1 Origin
Unknown
Tonale, Italy
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From English feldspar and -ite
Not Available
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Arborescent Patterned, Vitreous
Phaneritic
2.2 Color
Black, Blue, Brown, Green, Orange, Red, Tan, Yellow
Black, Brown, Light to Dark Grey, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Layered, Banded, Veined and Shiny
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Flooring, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
Paving Stone, Garden Decoration
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Arrowheads, Cutting Tool, Knives, Scrapers, Spear Points
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Surgery
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Mirror, Jewelry
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Available in Lots of Colors and Patterns, Clasts are smooth to touch, Splintery, Very fine grained rock
Is one of the oldest rock, Typically speckled black and white.
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Felsite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
When alkali feldspar is extracted from granite, it changes to granitoid and later, it becomes trondhjemite with quartz as major mineral.
5.2 Composition
5.2.1 Mineral Content
Feldspar, Iron Oxides
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Manganese Oxides, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
NaCl, CaO, MgO, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Glacier Erosion, Water Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-5.5
6-7
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
Bluish Black
6.1.5 Porosity
Very Less Porous
Very Less Porous
6.1.6 Luster
Vitreous
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
0.15 N/mm2
Rank: 33 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Non-Existent
Not Available
6.1.9 Toughness
Not Available
2.1
6.1.10 Specific Gravity
2.6-2.7
2.86-3
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.6 g/cm3
2.73 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Indonesia, Japan, Russia
Not Yet Found
7.1.2 Africa
Kenya
Egypt
7.1.3 Europe
Greece, Hungary, Iceland, Italy, Turkey
Finland, Germany, Italy, Romania, Sweden, Turkey
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
USA
7.2.2 South America
Argentina, Chile, Ecuador, Peru
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand
New Zealand, South Australia, Western Australia

Felsite vs Trondhjemite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Felsite and Trondhjemite Reserves. Felsite is a very fine grained volcanic rock that may or may not contain larger crystals and light colored rock that typically requires petrographic examination or chemical analysis for more precise definition. Trondhjemite is a leucocratic (light-colored) intrusive igneous rock. It is a variety of tonalite in which the plagioclase is mostly in the form of oligoclase. Trondhjemites are sometimes known as plagiogranites.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Felsite vs Trondhjemite information and Felsite vs Trondhjemite characteristics in the upcoming sections.

Felsite vs Trondhjemite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Felsite vs Trondhjemite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Felsite and Properties of Trondhjemite. Learn more about Felsite vs Trondhjemite in the next section. The interior uses of Felsite include Decorative aggregates, Flooring and Interior decoration whereas the interior uses of Trondhjemite include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Felsite and Trondhjemite, they have various applications in construction industry. The uses of Felsite in construction industry include Arrowheads, Cutting tool, Knives, Scrapers, Spear points and that of Trondhjemite include As dimension stone, Cement manufacture, Cobblestones, Construction aggregate, For road aggregate.

More about Felsite and Trondhjemite

Here you can know more about Felsite and Trondhjemite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Felsite and Trondhjemite consists of mineral content and compound content. The mineral content of Felsite includes Feldspar, Iron Oxides and mineral content of Trondhjemite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Manganese Oxides, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Felsite vs Trondhjemite, the texture, color and appearance plays an important role in determining the type of rock. Felsite is available in black, blue, brown, green, orange, red, tan, yellow colors whereas, Trondhjemite is available in black, brown, light to dark grey, white colors. Appearance of Felsite is Layered, Banded, Veined and Shiny and that of Trondhjemite is Banded and Foilated. Properties of rock is another aspect for Felsite vs Trondhjemite. The hardness of Felsite is 5-5.5 and that of Trondhjemite is 6-7. The types of Felsite are Not Available whereas types of Trondhjemite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Felsite is white while that of Trondhjemite is bluish black. The specific heat capacity of Felsite is 0.92 kJ/Kg K and that of Trondhjemite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Felsite is heat resistant, impact resistant whereas Trondhjemite is heat resistant, pressure resistant, wear resistant.