Home
×

Evaporite
Evaporite

Slate
Slate



ADD
Compare
X
Evaporite
X
Slate

Evaporite vs Slate

Add ⊕
1 Definition
1.1 Definition
A water-soluble mineral sediment resulting from concentration and crystallization by evaporation from an aqueous solution
Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism
1.2 History
1.2.1 Origin
USA
England
1.2.2 Discoverer
Usiglio
Unknown
1.3 Etymology
From a sediment left after the evaporation
From Old French esclate, from esclat (French éclat)
1.4 Class
Sedimentary Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Foliated
2.2 Color
Colourless, Green, Grey, Silver, White
Black, Brown, Buff, Green, Light to Dark Grey, Purple, Red, Shades of Blue
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Glassy, Vesicular and Foilated
Dull
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
Bathrooms, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Used in the manufacture of Ceramic Powder, Used in the preparation of Sulfuric Acid and Silicon Diborite
Blackboards, Commemorative Tablets, Laboratory bench tops, Standard material for the bed of Billiard table, Standard material for the beds of Pool and Snooker table, Tombstones, Used in aquariums, Writing Slates
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Generally rough to touch, Splintery, Veined
Easily splits into thin plates, Surfaces are often shiny, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Evaporite is water-soluble mineral sediment which forms from concentration and crystallization by evaporation from an aqueous solution.
Slate is a low grade metamorphic rock that is generally formed by metamorphosis of mudstone or shale, under relatively low pressure and temperature conditions.
5.2 Composition
5.2.1 Mineral Content
Calcite, Cancrinite, Gypsum, Kyanite, Magnetite
Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon
5.2.2 Compound Content
CaMg(CO3)2, CaO, Calcium Sulfate, KCl, MgO, NaCl
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
2-3
3-4
6.1.2 Grain Size
Medium to Fine Coarse Grained
Very fine-grained
6.1.3 Fracture
Conchoidal
Splintery
6.1.4 Streak
White
Light to dark brown
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Dull
6.1.7 Compressive Strength
Flint
225.00 N/mm2
Rank: 7 (Overall)
30.00 N/mm2
Rank: 30 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Slaty
6.1.9 Toughness
Not Available
1.2
6.1.10 Specific Gravity
2.86-2.99
2.65-2.8
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.76 kJ/Kg K
Rank: 17 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Available
China, India, Turkey
7.1.2 Africa
Not Available
Not Yet Found
7.1.3 Europe
United Kingdom
Belgium, France, Germany, Italy, Norway, Portugal, Spain, United Kingdom
7.1.4 Others
Not Yet Found
Arctic
7.2 Deposits in Western Continents
7.2.1 North America
USA
USA
7.2.2 South America
Colombia, Paraguay
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
Not Yet Found

Evaporite vs Slate Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Evaporite and Slate Reserves. A water-soluble mineral sediment resulting from concentration and crystallization by evaporation from an aqueous solution. Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Evaporite vs Slate information and Evaporite vs Slate characteristics in the upcoming sections.

Evaporite vs Slate Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Evaporite vs Slate characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Evaporite and Properties of Slate. Learn more about Evaporite vs Slate in the next section. The interior uses of Evaporite include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration whereas the interior uses of Slate include Bathrooms, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads. Due to some exceptional properties of Evaporite and Slate, they have various applications in construction industry. The uses of Evaporite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Slate include As dimension stone.

More about Evaporite and Slate

Here you can know more about Evaporite and Slate. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Evaporite and Slate consists of mineral content and compound content. The mineral content of Evaporite includes Calcite, Cancrinite, Gypsum, Kyanite, Magnetite and mineral content of Slate includes Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon. You can also check out the list of all Sedimentary Rocks. When we have to compare Evaporite vs Slate, the texture, color and appearance plays an important role in determining the type of rock. Evaporite is available in colourless, green, grey, silver, white colors whereas, Slate is available in black, brown, buff, green, light to dark grey, purple, red, shades of blue colors. Appearance of Evaporite is Glassy, Vesicular and Foilated and that of Slate is Dull. Properties of rock is another aspect for Evaporite vs Slate. The hardness of Evaporite is 2-3 and that of Slate is 3-4. The types of Evaporite are Not Available whereas types of Slate are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Evaporite is white while that of Slate is light to dark brown. The specific heat capacity of Evaporite is 0.92 kJ/Kg K and that of Slate is 0.76 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Evaporite is heat resistant, pressure resistant whereas Slate is heat resistant, impact resistant, pressure resistant, wear resistant.