Home
×

Dunite
Dunite

Trondhjemite
Trondhjemite



ADD
Compare
X
Dunite
X
Trondhjemite

Dunite vs Trondhjemite

1 Definition
1.1 Definition
Dunite is a green to brownish coarse-grained igneous rock mainly consisting of olivine
Trondhjemite is a leucocratic (light-colored) intrusive igneous rock. It is a variety of tonalite in which the plagioclase is mostly in the form of oligoclase. Trondhjemites are sometimes known as plagiogranites.
1.2 History
1.2.1 Origin
New Zealand
Tonale, Italy
1.2.2 Discoverer
Ferdinand von Hochstetter
Unknown
1.3 Etymology
From the name of Dun Mountain, New Zealand, + -ite1
Not Available
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Phaneritic
2.2 Color
Dark Greenish - Grey
Black, Brown, Light to Dark Grey, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough and Shiny
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Making natural cement, Raw material for the manufacture of mortar
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone, Jewelry, Source of Chromite, Platinum, Nickel and Garnet, Source of Diamonds
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Constitutes upper part of the Earth's mantle, Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
Is one of the oldest rock, Typically speckled black and white.
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Dunite is a plutonic ultramafic igneous rock consisting almost m olivine. It can be formed in two ways.
When alkali feldspar is extracted from granite, it changes to granitoid and later, it becomes trondhjemite with quartz as major mineral.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Manganese Oxides, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
5.2.2 Compound Content
Ca, CaO, Fe, Potassium, Silicon Dioxide, Sodium, Titanium Dioxide
NaCl, CaO, MgO, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Glacier Erosion, Water Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
6-7
6.1.2 Grain Size
Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Irregular
Conchoidal
6.1.4 Streak
White
Bluish Black
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Shiny
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
107.55 N/mm2
Rank: 19 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Imperfect
Not Available
6.1.9 Toughness
2.1
2.1
6.1.10 Specific Gravity
3-3.01
2.86-3
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.84-2.85 g/cm3
2.73 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
1.25 kJ/Kg K
Rank: 6 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Indonesia, Kazakhstan, Russia, South Korea, Thailand, Turkey
Not Yet Found
7.1.2 Africa
Morocco, South Africa
Egypt
7.1.3 Europe
Finland, France, Georgia, Germany, Great Britain, Italy, Kazakhstan, Netherlands, Norway, Spain, Switzerland, Venezuela
Finland, Germany, Italy, Romania, Sweden, Turkey
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Argentina, Brazil, Colombia, Ecuador, Venezuela
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New Zealand, South Australia, Western Australia

Dunite vs Trondhjemite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Dunite and Trondhjemite Reserves. Dunite is a green to brownish coarse-grained igneous rock mainly consisting of olivine. Trondhjemite is a leucocratic (light-colored) intrusive igneous rock. It is a variety of tonalite in which the plagioclase is mostly in the form of oligoclase. Trondhjemites are sometimes known as plagiogranites.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Dunite vs Trondhjemite information and Dunite vs Trondhjemite characteristics in the upcoming sections.

Dunite vs Trondhjemite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Dunite vs Trondhjemite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Dunite and Properties of Trondhjemite. Learn more about Dunite vs Trondhjemite in the next section. The interior uses of Dunite include Decorative aggregates and Interior decoration whereas the interior uses of Trondhjemite include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Dunite and Trondhjemite, they have various applications in construction industry. The uses of Dunite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Making natural cement, Raw material for the manufacture of mortar and that of Trondhjemite include As dimension stone, Cement manufacture, Cobblestones, Construction aggregate, For road aggregate.

More about Dunite and Trondhjemite

Here you can know more about Dunite and Trondhjemite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Dunite and Trondhjemite consists of mineral content and compound content. The mineral content of Dunite includes Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene and mineral content of Trondhjemite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Manganese Oxides, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Dunite vs Trondhjemite, the texture, color and appearance plays an important role in determining the type of rock. Dunite is available in dark greenish - grey colors whereas, Trondhjemite is available in black, brown, light to dark grey, white colors. Appearance of Dunite is Rough and Shiny and that of Trondhjemite is Banded and Foilated. Properties of rock is another aspect for Dunite vs Trondhjemite. The hardness of Dunite is 3.5-4 and that of Trondhjemite is 6-7. The types of Dunite are Not Available whereas types of Trondhjemite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Dunite is white while that of Trondhjemite is bluish black. The specific heat capacity of Dunite is 1.25 kJ/Kg K and that of Trondhjemite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Dunite is heat resistant, pressure resistant, wear resistant whereas Trondhjemite is heat resistant, pressure resistant, wear resistant.