Home
×

Dolomite
Dolomite

Andesite
Andesite



ADD
Compare
X
Dolomite
X
Andesite

Dolomite vs Andesite

Add ⊕
1 Definition
1.1 Definition
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight
Andesite is a dark, fine-grained, brown or greyish intermediate volcanic rock which is a commonly found in lava
1.2 History
1.2.1 Origin
Southern Alps, France
North America
1.2.2 Discoverer
Dolomieu
Unknown
1.3 Etymology
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock
From Andes mountains, where it is found in abundance
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Aphanitic to Porphyritic
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Bluish - Grey, Grey, Pink, Yellow
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Glassy or Pearly
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration, Kitchens
3.1.2 Exterior Uses
Garden Decoration, Office Buildings
Office Buildings, Roof Tiles
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
Cobblestones, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Boninite and Jasperoid
Icelandite
4.2 Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
Generally rough to touch, High silica content, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Middle of the Earth in Ecuador
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.
Andesite is a fine-grained igneous rock that forms when the magma is erupted onto the surface and is crystallized quickly.
5.2 Composition
5.2.1 Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite, Magnetite, Plagioclase, Pyroxene, Zircon
5.2.2 Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Very fine-grained
6.1.3 Fracture
Conchoidal
Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Vitreous and Pearly
Vitreous
6.1.7 Compressive Strength
Flint
140.00 N/mm2
Rank: 15 (Overall)
225.00 N/mm2
Rank: 7 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Not Available
6.1.9 Toughness
1
1.1
6.1.10 Specific Gravity
2.8-3
2.5-2.8
6.1.11 Transparency
Transparent to Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.11-2.36 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
2.39 kJ/Kg K
Rank: 2 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
India, Indonesia, Japan, Nepal, South Korea
7.1.2 Africa
Morocco, Namibia
Egypt, Ethiopia, Morocco, Namibia, South Africa, Tanzania
7.1.3 Europe
Austria, Italy, Romania, Spain, Switzerland
Austria, Finland, Germany, Italy, Romania, Turkey, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Mexico, USA
Mexico, USA
7.2.2 South America
Brazil, Colombia
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Yorke Peninsula
New South Wales, New Zealand, Western Australia

Dolomite vs Andesite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Dolomite and Andesite Reserves. Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight. Andesite is a dark, fine-grained, brown or greyish intermediate volcanic rock which is a commonly found in lava. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Dolomite vs Andesite information and Dolomite vs Andesite characteristics in the upcoming sections.

Dolomite vs Andesite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Dolomite vs Andesite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Dolomite and Properties of Andesite. Learn more about Dolomite vs Andesite in the next section. The interior uses of Dolomite include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Andesite include Decorative aggregates, Floor tiles, Homes, Interior decoration and Kitchens. Due to some exceptional properties of Dolomite and Andesite, they have various applications in construction industry. The uses of Dolomite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock and that of Andesite include Cobblestones, Construction aggregate, For road aggregate.

More about Dolomite and Andesite

Here you can know more about Dolomite and Andesite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Dolomite and Andesite consists of mineral content and compound content. The mineral content of Dolomite includes Clay Minerals, Pyrite, Quartz, Sulfides and mineral content of Andesite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite, Magnetite, Plagioclase, Pyroxene, Zircon. You can also check out the list of all Sedimentary Rocks. When we have to compare Dolomite vs Andesite, the texture, color and appearance plays an important role in determining the type of rock. Dolomite is available in black, brown, colourless, green, grey, pink, white colors whereas, Andesite is available in bluish - grey, grey, pink, yellow colors. Appearance of Dolomite is Glassy or Pearly and that of Andesite is Dull and Soft. Properties of rock is another aspect for Dolomite vs Andesite. The hardness of Dolomite is 3.5-4 and that of Andesite is 7. The types of Dolomite are Boninite and Jasperoid whereas types of Andesite are Icelandite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Dolomite and Andesite is white. The specific heat capacity of Dolomite is 0.92 kJ/Kg K and that of Andesite is 2.39 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Dolomite is heat resistant, pressure resistant, wear resistant whereas Andesite is heat resistant, pressure resistant, wear resistant.

Let Others Know
×