Home
×

Dolomite
Dolomite

Oolite
Oolite



ADD
Compare
X
Dolomite
X
Oolite

Dolomite and Oolite

Add ⊕
1 Definition
1.1 Definition
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight
Oolite is a sedimentary rock formed from ooids, spherical grains which are composed of concentric layers of calcite
1.2 History
1.2.1 Origin
Southern Alps, France
Unknown
1.2.2 Discoverer
Dolomieu
Unknown
1.3 Etymology
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock
From oo- + -lite, after German Oolit. A rock consisting of fine grains of carbonate of lime
1.4 Class
Sedimentary Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Clastic or Non-Clastic
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Blue, Brown, Cream, Green, Grey, Pink, Red, Silver, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Glassy or Pearly
Rounded and Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Not Yet Used
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
Cement Manufacture, Cobblestones, Landscaping
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Creating Artwork, Jewelry, Used in aquariums
4 Types
4.1 Types
Boninite and Jasperoid
Not Available
4.2 Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
Available in lots of colors, Generally rough to touch, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Present
Present
5 Formation
5.1 Formation
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.
Oolites form when layers of calcite are deposited around a sand grain or fossil piece and are rolled around in calm water, which makes them round.
5.2 Composition
5.2.1 Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides
Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt
5.2.2 Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
Aluminium Oxide, Ca, NaCl, CaO, Iron(III) Oxide, FeO, MgO
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Not Applicable
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
3-4
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Vitreous and Pearly
Pearly to Shiny
6.1.7 Compressive Strength
What Is Flint
140.00 N/mm2
Rank: 15 (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Non-Existent
6.1.9 Toughness
1
1
6.1.10 Specific Gravity
2.8-3
Not Available
6.1.11 Transparency
Transparent to Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
0.92 kJ/Kg K
Rank: 10 (Overall)
Not Available
Rank: N/A (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
Brunei, India, Indonesia, Malaysia, Singapore, Thailand, Vietnam
7.1.2 Africa
Morocco, Namibia
Cameroon, Chad, Ghana, Kenya, Malawi, Sudan, Tanzania, Togo, Zambia, Zimbabwe
7.1.3 Europe
Austria, Italy, Romania, Spain, Switzerland
United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Mexico, USA
USA
7.2.2 South America
Brazil, Colombia
Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Yorke Peninsula
Adelaide, New Zealand, Queensland, Tonga, Victoria, Yorke Peninsula

All about Dolomite and Oolite Properties

Know all about Dolomite and Oolite properties here. All properties of rocks are important as they define the type of rock and its application. Dolomite and Oolite belong to Sedimentary Rocks.Texture of Dolomite is Earthy whereas that of Oolite is Clastic or Non-Clastic. Dolomite appears Glassy or Pearly and Oolite appears Rounded and Rough. The luster of Dolomite is vitreous and pearly while that of Oolite is pearly to shiny. Dolomite is available in black, brown, colourless, green, grey, pink, white colors whereas Oolite is available in black, blue, brown, cream, green, grey, pink, red, silver, white, yellow colors. The commercial uses of Dolomite are an oil and gas reservoir, as a feed additive for livestock, gemstone, metallurgical flux, production of lime, soil conditioner, source of magnesia (mgo) and that of Oolite are creating artwork, jewelry, used in aquariums.