Home
×

Dacite
Dacite

Lamprophyre
Lamprophyre



ADD
Compare
X
Dacite
X
Lamprophyre

Dacite vs Lamprophyre

1 Definition
1.1 Definition
Dacite is a volcanic igneous rock which is rintermediate in composition between andesite and rhyolite
Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions
1.2 History
1.2.1 Origin
Romania and Moldova, Europe
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Dacia, a province of the Roman Empire which lay between the Danube River and Carpathian Mountains where the rock was first described
From Greek lampros bright and shining + porphureos purple
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Porphyritic
2.2 Color
Bluish - Grey, Brown, Grey, Light to Dark Grey
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Vesicular
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration
As Building Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Construction Aggregate, for Road Aggregate, Landscaping
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Footwall Dacite, Hanging wall Dacite, Tuff and Biotite Dacite
Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite
4.2 Features
Host Rock for Lead, Is one of the oldest rock
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Dacitic magma is formed by the subduction of young oceanic crust under a thick felsic continental plate. Further, the Oceanic crust is hydrothermally altered as quartz and sodium are added.
Lamprophyre formation takes place deep beneath the Earth’s surface at around 150 to 450 kilometres, and are erupted rapidly and violently.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene
5.2.2 Compound Content
Ca, Fe, Potassium Oxide, Mg, Potassium, Silicon Dioxide
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
Cataclastic Metamorphism, Impact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
2-2.25
5-6
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine to Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Subvitreous to Dull
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Conchoidal
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.86-2.87
2.86-2.87
6.1.11 Transparency
Translucent
Translucent to Opaque
6.1.12 Density
2.77-2.771 g/cm3
2.95-2.96 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Russia
7.1.2 Africa
Not Yet Found
Angola, Botswana, Cameroon, Ethiopia, South Africa
7.1.3 Europe
France, Greece, Romania, Scotland, Spain
England, Hungary, Iceland, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, Mexico, USA
7.2.2 South America
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
Argentina, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, South Australia, Western Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia

Dacite vs Lamprophyre Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Dacite and Lamprophyre Reserves. Dacite is a volcanic igneous rock which is rintermediate in composition between andesite and rhyolite. Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Dacite vs Lamprophyre information and Dacite vs Lamprophyre characteristics in the upcoming sections.

Dacite vs Lamprophyre Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Dacite vs Lamprophyre characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Dacite and Properties of Lamprophyre. Learn more about Dacite vs Lamprophyre in the next section. The interior uses of Dacite include Decorative aggregates, Entryways and Interior decoration whereas the interior uses of Lamprophyre include Decorative aggregates and Interior decoration. Due to some exceptional properties of Dacite and Lamprophyre, they have various applications in construction industry. The uses of Dacite in construction industry include As dimension stone, Construction aggregate, For road aggregate, Landscaping and that of Lamprophyre include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Dacite and Lamprophyre

Here you can know more about Dacite and Lamprophyre. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Dacite and Lamprophyre consists of mineral content and compound content. The mineral content of Dacite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon and mineral content of Lamprophyre includes Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Dacite vs Lamprophyre, the texture, color and appearance plays an important role in determining the type of rock. Dacite is available in bluish - grey, brown, grey, light to dark grey colors whereas, Lamprophyre is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Dacite is Vesicular and that of Lamprophyre is Dull, Banded and Foilated. Properties of rock is another aspect for Dacite vs Lamprophyre. The hardness of Dacite is 2-2.25 and that of Lamprophyre is 5-6. The types of Dacite are Footwall Dacite, Hanging wall Dacite, Tuff and Biotite Dacite whereas types of Lamprophyre are Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Dacite and Lamprophyre is white. The specific heat capacity of Dacite is 0.92 kJ/Kg K and that of Lamprophyre is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Dacite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Lamprophyre is heat resistant, impact resistant.