Home
×

Cataclasite
Cataclasite

Ganister
Ganister



ADD
Compare
X
Cataclasite
X
Ganister

Cataclasite vs Ganister

1 Definition
1.1 Definition
Cataclasite is a type of cataclastic rock that is formed by fracturing and comminution during faulting. It is normally cohesive and non-foliated, consisting of angular clasts in a finer-grained matrix
A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.
1.2 History
1.2.1 Origin
Swiss Alps, Europe
England
1.2.2 Discoverer
Michael Tellinger
Unknown
1.3 Etymology
From the Italian word cataclasi
From gan′is-ter i.e a hard, close-grained siliceous stone, often forming the stratum which underlies a coal-seam
1.4 Class
Metamorphic Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic
Clastic, Granular, Rough
2.2 Color
Brown, Green, White, Yellow
Beige, Black, Brown, Colourless, Cream, Dark Brown, Green, Grey, Light Green, Light to Dark Grey, Pink, Red, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Dull and Banded
Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
Cement Manufacture, Construction Aggregate, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork
An Oil and Gas Reservoir, In aquifers, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones
4 Types
4.1 Types
Protocataclasite, Mesocataclasite, Ultracataclasite and Foliated cataclasite
Not Available
4.2 Features
Easily splits into thin plates, Is one of the oldest rock
Available in Lots of Colors and Patterns, Generally rough to touch, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Cataclasiste rocks mainly form by pressure deep under the Earth's surface, from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
Ganisters are formed by the destruction of easily weathered minerals mainly feldspar, within the surface horizon of soil by soil-forming processes.
5.2 Composition
5.2.1 Mineral Content
Albite, Apatite, Augite, Biotite, Calcite, Enstatite, Epidote, Feldspar, Micas, Muscovite or Illite, Pyroxene, Quartz
Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz
5.2.2 Compound Content
Silicon Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Not Applicable
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Mechanical Weathering
Biological Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Wind Erosion
Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-4
6-7
6.1.2 Grain Size
Fine Grained
Coarse or Fine
6.1.3 Fracture
NA
Splintery
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Vitreous
Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
95.00 N/mm2
Rank: 20 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
Not Available
2.6
6.1.10 Specific Gravity
2.1
2.2-2.8
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.9-3.1 g/cm3
2.2-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Russia, Saudi Arabia, South Korea
China, India, Kazakhstan, Mongolia, Russia, Uzbekistan
7.1.2 Africa
Egypt, Ethiopia, Kenya, Madagascar, Morocco, South Africa
Namibia, Nigeria, South Africa
7.1.3 Europe
England, Finland, France, Spain, United Kingdom
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Argentina, Colombia
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
New South Wales, New Zealand

Cataclasite vs Ganister Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Cataclasite and Ganister Reserves. Cataclasite is a type of cataclastic rock that is formed by fracturing and comminution during faulting. It is normally cohesive and non-foliated, consisting of angular clasts in a finer-grained matrix. A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Cataclasite vs Ganister information and Cataclasite vs Ganister characteristics in the upcoming sections.

Cataclasite vs Ganister Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Cataclasite vs Ganister characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Cataclasite and Properties of Ganister. Learn more about Cataclasite vs Ganister in the next section. The interior uses of Cataclasite include Decorative aggregates and Homes whereas the interior uses of Ganister include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Cataclasite and Ganister, they have various applications in construction industry. The uses of Cataclasite in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate and that of Ganister include Cement manufacture, Construction aggregate, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar.

More about Cataclasite and Ganister

Here you can know more about Cataclasite and Ganister. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Cataclasite and Ganister consists of mineral content and compound content. The mineral content of Cataclasite includes Albite, Apatite, Augite, Biotite, Calcite, Enstatite, Epidote, Feldspar, Micas, Muscovite or Illite, Pyroxene, Quartz and mineral content of Ganister includes Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz. You can also check out the list of all Metamorphic Rocks. When we have to compare Cataclasite vs Ganister, the texture, color and appearance plays an important role in determining the type of rock. Cataclasite is available in brown, green, white, yellow colors whereas, Ganister is available in beige, black, brown, colourless, cream, dark brown, green, grey, light green, light to dark grey, pink, red, white, yellow colors. Appearance of Cataclasite is Dull and Banded and that of Ganister is Rough. Properties of rock is another aspect for Cataclasite vs Ganister. The hardness of Cataclasite is 3-4 and that of Ganister is 6-7. The types of Cataclasite are Protocataclasite, Mesocataclasite, Ultracataclasite and Foliated cataclasite whereas types of Ganister are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Cataclasite is black while that of Ganister is white. The specific heat capacity of Cataclasite is Not Available and that of Ganister is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Cataclasite is heat resistant, impact resistant, pressure resistant whereas Ganister is heat resistant, impact resistant, pressure resistant.