Home
×

Carbonatite
Carbonatite

Basalt
Basalt



ADD
Compare
X
Carbonatite
X
Basalt

Carbonatite vs Basalt

1 Definition
1.1 Definition
Carbonatite is intrusive or extrusive igneous rock which is defined by mineralogic composition, consisting of greater than 50 percent carbonate minerals
Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth
1.2 History
1.2.1 Origin
Tanzania
Egypt
1.2.2 Discoverer
Unknown
Georgius Agricola
1.3 Etymology
From any intrusive igneous rock, having a majority of carbonate minerals
From Late Latin Basaltes (variant of basanites ), very hard stone, which was imported from Ancient Greek Basanites
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular, Poikiloblastic
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Brown, Light to Dark Grey
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull, Banded and Foilated
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Floor Tiles, Homes, Hotels, Kitchens
3.1.2 Exterior Uses
As Facing Stone, Garden Decoration
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing, Whetstones
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Unknown, Unknown
Arrowheads, As Dimension Stone, Cobblestones, Cutting Tool, Rail Track Ballast, Roadstone
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux
An Oil and Gas Reservoir, Commemorative Tablets, Creating Artwork, Used in aquariums
4 Types
4.1 Types
Not Available
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
4.2 Features
Available in lots of colors, Generally rough to touch, Is one of the oldest rock
Has High structural resistance against erosion and climate, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Easter Island in the Polynesian Triangle, Pacific Ocean, Gateway of India in Mumbai, India, Gol Gumbaz in Karnataka, India
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Carbonatites are intrusive or extrusive igneous rocks which are defined by mineralogic composition consisting of greater than 50 percent carbonate minerals and are formed due to low degrees of partial melting of rocks.
Basalt forms when lava reaches the Earth's surface near an active volcano. The temperature of lava is between 1100 to 1250° C when it gets to the surface.
5.2 Composition
5.2.1 Mineral Content
Ancylite, Apatite, Barite, Fluorite, Magnetite, Natrolite, Sodalite
Olivine, Plagioclase, Pyroxene
5.2.2 Compound Content
CaO, Carbon Dioxide, Sodium Oxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Contact Metamorphism
Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Wind Erosion
Not Available
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3
6
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White to Grey
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Not Available
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
37.40 N/mm2
Rank: 28 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Not Available
6.1.9 Toughness
1
2.3
6.1.10 Specific Gravity
2.86-2.87
2.8-3
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.84-2.86 g/cm3
2.9-3.1 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.84 kJ/Kg K
Rank: 15 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Water Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Kazakhstan, Mongolia, Russia, Uzbekistan
India, Russia
7.1.2 Africa
Namibia, Nigeria, South Africa
South Africa
7.1.3 Europe
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
Iceland
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Brazil
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand
Not Yet Found

Carbonatite vs Basalt Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Carbonatite and Basalt Reserves. Carbonatite is intrusive or extrusive igneous rock which is defined by mineralogic composition, consisting of greater than 50 percent carbonate minerals. Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Carbonatite vs Basalt information and Carbonatite vs Basalt characteristics in the upcoming sections.

Carbonatite vs Basalt Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Carbonatite vs Basalt characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Carbonatite and Properties of Basalt. Learn more about Carbonatite vs Basalt in the next section. The interior uses of Carbonatite include Decorative aggregates and Interior decoration whereas the interior uses of Basalt include Floor tiles, Homes, Hotels and Kitchens. Due to some exceptional properties of Carbonatite and Basalt, they have various applications in construction industry. The uses of Carbonatite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Unknown, Unknown and that of Basalt include Arrowheads, As dimension stone, Cobblestones, Cutting tool, Rail track ballast, Roadstone.

More about Carbonatite and Basalt

Here you can know more about Carbonatite and Basalt. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Carbonatite and Basalt consists of mineral content and compound content. The mineral content of Carbonatite includes Ancylite, Apatite, Barite, Fluorite, Magnetite, Natrolite, Sodalite and mineral content of Basalt includes Olivine, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Carbonatite vs Basalt, the texture, color and appearance plays an important role in determining the type of rock. Carbonatite is available in black, brown, colourless, green, grey, pink, white colors whereas, Basalt is available in black, brown, light to dark grey colors. Appearance of Carbonatite is Dull, Banded and Foilated and that of Basalt is Dull and Soft. Properties of rock is another aspect for Carbonatite vs Basalt. The hardness of Carbonatite is 3 and that of Basalt is 6. The types of Carbonatite are Not Available whereas types of Basalt are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Carbonatite is white while that of Basalt is white to grey. The specific heat capacity of Carbonatite is Not Available and that of Basalt is 0.84 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Carbonatite is heat resistant, pressure resistant, water resistant whereas Basalt is heat resistant, pressure resistant, wear resistant.