Home
×

Benmoreite
Benmoreite

Gneiss
Gneiss



ADD
Compare
X
Benmoreite
X
Gneiss

Benmoreite vs Gneiss

Add ⊕
1 Definition
1.1 Definition
An iron rich extrusive rock found as a member of the alkali basalt magma series
Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks
1.2 History
1.2.1 Origin
Isle of Mull, Scotland
Unknown
1.2.2 Discoverer
Ben More
Unknown
1.3 Etymology
From the name of discoverer, Ben More
From the Middle High German verb gneist (to spark; so called because the rock glitters)
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Massive, Porphyritic, Scoriaceous, Trachytic, Vesicular
Banded, Foliated, Platy
2.2 Color
Black, Brown, Light to Dark Grey
Black, Brown, Pink, Red, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Rough and Dull
Foliated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Floor Tiles, Homes, Hotels, Kitchens
Countertops, Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork, Curling
Cemetery Markers, Jewelry, Tombstones, Used in aquariums
4 Types
4.1 Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB) and Tholeiitic Basalt
Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.
4.2 Features
Has High structural resistance against erosion and climate, Very fine grained rock
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Konark Sun Temple in India, Washington Monument, US
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Benmoreite is a type of Igneous rock which is formed through the cooling and solidification of lava or magma. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Gneiss is a high grade metamorphic rock i.e. it has been subjected to higher temperatures and pressures than schist. It is formed by the metamorphosis of Gneiss forms from volcanic rock, shale or granitie.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Olivine, Plagioclase, Pyroxene, Sodic plagioclase
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Impact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6
7
6.1.2 Grain Size
Fine Grained
Medium to Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Earthy
Dull
6.1.7 Compressive Strength
Flint
37.40 N/mm2
Rank: 28 (Overall)
125.00 N/mm2
Rank: 17 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Poor
6.1.9 Toughness
2.3
1.2
6.1.10 Specific Gravity
2.8-3
2.5-2.7
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.9-3.1 g/cm3
2.6-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.84 kJ/Kg K
Rank: 15 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
7.1.2 Africa
South Africa
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
7.1.3 Europe
Iceland
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Switzerland, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Brazil
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, New Zealand, Queensland, Victoria

Benmoreite vs Gneiss Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Benmoreite and Gneiss Reserves. An iron rich extrusive rock found as a member of the alkali basalt magma series. Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Benmoreite vs Gneiss information and Benmoreite vs Gneiss characteristics in the upcoming sections.

Benmoreite vs Gneiss Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Benmoreite vs Gneiss characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Benmoreite and Properties of Gneiss. Learn more about Benmoreite vs Gneiss in the next section. The interior uses of Benmoreite include Floor tiles, Homes, Hotels and Kitchens whereas the interior uses of Gneiss include Countertops, Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Benmoreite and Gneiss, they have various applications in construction industry. The uses of Benmoreite in construction industry include As dimension stone, Cobblestones, Rail track ballast, Roadstone and that of Gneiss include As dimension stone.

More about Benmoreite and Gneiss

Here you can know more about Benmoreite and Gneiss. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Benmoreite and Gneiss consists of mineral content and compound content. The mineral content of Benmoreite includes Alkali feldspar, Biotite, Olivine, Plagioclase, Pyroxene, Sodic plagioclase and mineral content of Gneiss includes Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Benmoreite vs Gneiss, the texture, color and appearance plays an important role in determining the type of rock. Benmoreite is available in black, brown, light to dark grey colors whereas, Gneiss is available in black, brown, pink, red, white colors. Appearance of Benmoreite is Rough and Dull and that of Gneiss is Foliated. Properties of rock is another aspect for Benmoreite vs Gneiss. The hardness of Benmoreite is 6 and that of Gneiss is 7. The types of Benmoreite are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB) and Tholeiitic Basalt whereas types of Gneiss are Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Benmoreite is black while that of Gneiss is white. The specific heat capacity of Benmoreite is 0.84 kJ/Kg K and that of Gneiss is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Benmoreite is heat resistant, pressure resistant, wear resistant whereas Gneiss is heat resistant, pressure resistant, scratch resistant, wear resistant.