Home
×

Anorthosite
Anorthosite

Anthracite
Anthracite



ADD
Compare
X
Anorthosite
X
Anthracite

Anorthosite vs Anthracite

1 Definition
1.1 Definition
Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
1.2 History
1.2.1 Origin
Unknown
Pennsylvania, U.S.
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From French anorthose plagioclase + -ite1
From Greek anthrakites, from anthrax, anthrak meaning coal
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Foliated, Glassy
Amorphous, Glassy
2.2 Color
Black, Bluish - Grey, Brown, Green, Grey, Light Greenish Grey, Pink, White
Black, Brown, Dark Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Layered, Banded, Veined and Shiny
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Not Yet Used
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
Not Yet Used
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
3.2.2 Medical Industry
Not Yet Used
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
3.3 Antiquity Uses
Artifacts, Sculpture, Small Figurines
Not Yet Used
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Curling
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
4 Types
4.1 Types
Proterozoic Anorthosite and Archean Anorthosite
Semi-anthracite and Meta-anthracite
4.2 Features
Generally rough to touch, Is one of the oldest rock
Helps in production of Heat and Electricity, Used as fossil fuel
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Anorthosite is a phaneritic, intrusive igneous rock which is characterized by a predominance of plagioclase feldspar which is almost 90–100%, and a minimal mafic component.
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene
Calcite, Clay, Clay Minerals
5.2.2 Compound Content
Ca, CaO, Chromium(III) Oxide, MgO, Sulfur Trioxide
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Wind Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-6
1-1.5
6.1.2 Grain Size
Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Irregular
Conchoidal
6.1.4 Streak
White
Black
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Pearly to Subvitreous
Shiny
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Irregular
Non-Existent
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.62-2.82
1.1-1.4
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.7-4 g/cm3
1.25-2.5 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.84 kJ/Kg K
Rank: 15 (Overall)
1.32 kJ/Kg K
Rank: 4 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
Heat Resistant, Water Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
7.1.2 Africa
Not Yet Found
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
7.1.3 Europe
Bulgaria, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Malta, Poland, Portugal, Romania, Slovenia, Spain, Sweden, The Czech Republic
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada
Canada, Mexico, USA
7.2.2 South America
Bolivia, Colombia
Brazil, Chile, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, South Australia, Western Australia
New South Wales, Queensland, Victoria

Anorthosite vs Anthracite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Anorthosite and Anthracite Reserves. Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase. Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Anorthosite vs Anthracite information and Anorthosite vs Anthracite characteristics in the upcoming sections.

Anorthosite vs Anthracite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Anorthosite vs Anthracite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Anorthosite and Properties of Anthracite. Learn more about Anorthosite vs Anthracite in the next section. The interior uses of Anorthosite include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Anthracite include Not yet used. Due to some exceptional properties of Anorthosite and Anthracite, they have various applications in construction industry. The uses of Anorthosite in construction industry include As dimension stone, Cement manufacture, For road aggregate and that of Anthracite include Cement manufacture, For road aggregate, Making natural cement, Steel production.

More about Anorthosite and Anthracite

Here you can know more about Anorthosite and Anthracite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Anorthosite and Anthracite consists of mineral content and compound content. The mineral content of Anorthosite includes Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene and mineral content of Anthracite includes Calcite, Clay, Clay Minerals. You can also check out the list of all Igneous Rocks. When we have to compare Anorthosite vs Anthracite, the texture, color and appearance plays an important role in determining the type of rock. Anorthosite is available in black, bluish - grey, brown, green, grey, light greenish grey, pink, white colors whereas, Anthracite is available in black, brown, dark brown, grey, light to dark grey colors. Appearance of Anorthosite is Layered, Banded, Veined and Shiny and that of Anthracite is Veined or Pebbled. Properties of rock is another aspect for Anorthosite vs Anthracite. The hardness of Anorthosite is 5-6 and that of Anthracite is 1-1.5. The types of Anorthosite are Proterozoic Anorthosite and Archean Anorthosite whereas types of Anthracite are Semi-anthracite and Meta-anthracite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Anorthosite is white while that of Anthracite is black. The specific heat capacity of Anorthosite is 0.84 kJ/Kg K and that of Anthracite is 1.32 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Anorthosite is heat resistant, impact resistant, pressure resistant, scratch resistant, wear resistant whereas Anthracite is heat resistant, water resistant.