×

Oolite
Oolite

Evaporite
Evaporite



ADD
Compare
X
Oolite
X
Evaporite

Oolite vs Evaporite

Add ⊕
1 Definition
1.1 Definition
Oolite is a sedimentary rock formed from ooids, spherical grains which are composed of concentric layers of calcite
A water-soluble mineral sediment resulting from concentration and crystallization by evaporation from an aqueous solution
1.2 History
1.2.1 Origin
Unknown
USA
1.2.2 Discoverer
Unknown
Usiglio
1.3 Etymology
From oo- + -lite, after German Oolit. A rock consisting of fine grains of carbonate of lime
From a sediment left after the evaporation
1.4 Class
Sedimentary Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic or Non-Clastic
Earthy
2.2 Color
Black, Blue, Brown, Cream, Green, Grey, Pink, Red, Silver, White, Yellow
Colourless, Green, Grey, Silver, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rounded and Rough
Glassy, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Flooring, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, Cobblestones, Landscaping
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Jewelry, Used in aquariums
Used in the manufacture of Ceramic Powder, Used in the preparation of Sulfuric Acid and Silicon Diborite
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Available in lots of colors, Generally rough to touch, Very fine grained rock
Generally rough to touch, Splintery, Veined
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Not Yet Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Not Yet Used
4.4 Fossils
Present
Present
5 Formation
5.1 Formation
Oolites form when layers of calcite are deposited around a sand grain or fossil piece and are rolled around in calm water, which makes them round.
Evaporite is water-soluble mineral sediment which forms from concentration and crystallization by evaporation from an aqueous solution.
5.2 Composition
5.2.1 Mineral Content
Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt
Calcite, Cancrinite, Gypsum, Kyanite, Magnetite
5.2.2 Compound Content
Aluminium Oxide, Ca, NaCl, CaO, Iron(III) Oxide, FeO, MgO
CaMg(CO3)2, CaO, Calcium Sulfate, KCl, MgO, NaCl
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Not Applicable
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-42-3
Coal
1 7
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Pearly to Shiny
Subvitreous to Dull
6.1.7 Compressive Strength
NA225.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Non-Existent
Perfect
6.1.9 Toughness
1
Not Available
6.1.10 Specific Gravity
Not Available2.86-2.99
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
Not Available2.8-2.9 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NA0.92 kJ/Kg K
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Brunei, India, Indonesia, Malaysia, Singapore, Thailand, Vietnam
Not Available
7.1.2 Africa
Cameroon, Chad, Ghana, Kenya, Malawi, Sudan, Tanzania, Togo, Zambia, Zimbabwe
Not Available
7.1.3 Europe
United Kingdom
United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
USA
7.2.2 South America
Colombia
Colombia, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
Adelaide, New Zealand, Queensland, Tonga, Victoria, Yorke Peninsula
Central Australia, Western Australia

Oolite vs Evaporite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Oolite and Evaporite Reserves. Oolite is a sedimentary rock formed from ooids, spherical grains which are composed of concentric layers of calcite. A water-soluble mineral sediment resulting from concentration and crystallization by evaporation from an aqueous solution. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Oolite vs Evaporite information and Oolite vs Evaporite characteristics in the upcoming sections.

Oolite vs Evaporite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Oolite vs Evaporite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Oolite and Properties of Evaporite. Learn more about Oolite vs Evaporite in the next section. The interior uses of Oolite include Decorative aggregates, Flooring and Interior decoration whereas the interior uses of Evaporite include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Oolite and Evaporite, they have various applications in construction industry. The uses of Oolite in construction industry include Cement manufacture, Cobblestones, Landscaping and that of Evaporite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Oolite and Evaporite

Here you can know more about Oolite and Evaporite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Oolite and Evaporite consists of mineral content and compound content. The mineral content of Oolite includes Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt and mineral content of Evaporite includes Calcite, Cancrinite, Gypsum, Kyanite, Magnetite. You can also check out the list of all Sedimentary Rocks. When we have to compare Oolite vs Evaporite, the texture, color and appearance plays an important role in determining the type of rock. Oolite is available in black, blue, brown, cream, green, grey, pink, red, silver, white, yellow colors whereas, Evaporite is available in colourless, green, grey, silver, white colors. Appearance of Oolite is Rounded and Rough and that of Evaporite is Glassy, Vesicular and Foilated. Properties of rock is another aspect for Oolite vs Evaporite. The hardness of Oolite is 3-4 and that of Evaporite is 2-3. The types of Oolite are Not Available whereas types of Evaporite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Oolite and Evaporite is white. The specific heat capacity of Oolite is Not Available and that of Evaporite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Oolite is heat resistant, wear resistant whereas Evaporite is heat resistant, pressure resistant.