Home
Compare Rocks


Nepheline Syenite vs Gneiss


Gneiss vs Nepheline Syenite


Definition

Definition
Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz   
Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks   

History
  
  

Discoverer
Unknown   
Unknown   

Etymology
From origin of a Palaeozoic nepheline syenite from northern Shanxi Province, China   
From the Middle High German verb gneist (to spark; so called because the rock glitters)   

Class
Igneous Rocks   
Metamorphic Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Hard Rock   

Family
  
  

Group
Plutonic   
Not Applicable   

Other Categories
Fine Grained Rock, Opaque Rock   
Coarse Grained Rock, Medium Grained Rock, Opaque Rock   

Texture

Texture
Granular   
Banded, Foliated, Platy   

Color
Brown, Buff, Cream, Green, Grey, Pink, White   
Black, Brown, Pink, Red, White   

Maintenance
Less   
More   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
No   
Yes   

Stain Resistant
Yes   
Yes   

Wind Resistant
Yes   
Yes   

Acid Resistant
Yes   
No   

Appearance
Banded and Foilated   
Foliated   

Uses

Architecture
  
  

Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration   
Countertops, Decorative Aggregates, Flooring, Interior Decoration   

Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone   
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics   
As Dimension Stone   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts, Monuments, Sculpture   
Artifacts   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Creating Artwork   
Cemetery Markers, Jewelry, Tombstones, Used in aquariums   

Types

Types
Borolanite and Litchfieldite   
Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.   

Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock   
Generally rough to touch, Is one of the oldest rock   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Konark Sun Temple in India, Washington Monument, US   

Sculpture
Used   
Not Yet Used   

Famous Sculptures
Data Not Available   
Not Applicable   

Pictographs
Used   
Not Used   

Petroglyphs
Used   
Not Used   

Figurines
Used   
Not Yet Used   

Fossils
Absent   
Absent   

Formation

Formation
Nepheline Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.   
Gneiss is a high grade metamorphic rock i.e. it has been subjected to higher temperatures and pressures than schist. It is formed by the metamorphosis of Gneiss forms from volcanic rock, shale or granitie.   

Composition
  
  

Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite   
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Impact Metamorphism   
Impact Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering   
Biological Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion   
Chemical Erosion, Coastal Erosion, Sea Erosion   

Properties

Physical Properties
  
  

Hardness
5.5-6   
7   

Grain Size
Fine Grained   
Medium to Coarse Grained   

Fracture
Conchoidal to Uneven   
Irregular   

Streak
White   
White   

Porosity
Less Porous   
Very Less Porous   

Luster
Greasy to Dull   
Dull   

Compressive Strength
150.00 N/mm2   
14
125.00 N/mm2   
17

Cleavage
Poor   
Poor   

Toughness
Not Available   
1.2   

Specific Gravity
2.6   
2.5-2.7   

Transparency
Translucent to Opaque   
Translucent to Opaque   

Density
2.6 g/cm3   
2.6-2.9 g/cm3   

Thermal Properties
  
  

Resistance
Heat Resistant, Impact Resistant, Wear Resistant   
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam   
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia   

Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo   

Europe
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden   
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Switzerland, Ukraine, United Kingdom   

Others
Greenland   
Not Yet Found   

Deposits in Western Continents
  
  

North America
Canada, USA   
Canada, Costa Rica, Cuba, Mexico, Panama, USA   

South America
Brazil, Chile, Colombia, Uruguay, Venezuela   
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela   

Deposits in Oceania Continent
  
  

Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia   
New South Wales, New Zealand, Queensland, Victoria   

Definition >>
<< All

Nepheline Syenite vs Gneiss Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Nepheline Syenite and Gneiss Reserves. Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz. Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Nepheline Syenite vs Gneiss information and Nepheline Syenite vs Gneiss characteristics in the upcoming sections.

Compare Igneous Rocks

Nepheline Syenite vs Gneiss Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Nepheline Syenite vs Gneiss characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Nepheline Syenite and Properties of Gneiss. Learn more about Nepheline Syenite vs Gneiss in the next section. The interior uses of Nepheline Syenite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Gneiss include Countertops, Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Nepheline Syenite and Gneiss, they have various applications in construction industry. The uses of Nepheline Syenite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Gneiss include As dimension stone.

More about Nepheline Syenite and Gneiss

Here you can know more about Nepheline Syenite and Gneiss. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Nepheline Syenite and Gneiss consists of mineral content and compound content. The mineral content of Nepheline Syenite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Gneiss includes Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Nepheline Syenite vs Gneiss, the texture, color and appearance plays an important role in determining the type of rock. Nepheline Syenite is available in brown, buff, cream, green, grey, pink, white colors whereas, Gneiss is available in black, brown, pink, red, white colors. Appearance of Nepheline Syenite is Banded and Foilated and that of Gneiss is Foliated. Properties of rock is another aspect for Nepheline Syenite vs Gneiss. The hardness of Nepheline Syenite is 5.5-6 and that of Gneiss is 7. The types of Nepheline Syenite are Borolanite and Litchfieldite whereas types of Gneiss are Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Nepheline Syenite and Gneiss is white. The specific heat capacity of Nepheline Syenite is Not Available and that of Gneiss is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Nepheline Syenite is heat resistant, impact resistant, wear resistant whereas Gneiss is heat resistant, pressure resistant, scratch resistant, wear resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks