×

Limestone
Limestone

Appinite
Appinite



ADD
Compare
X
Limestone
X
Appinite

Limestone vs Appinite

1 Definition
1.1 Definition
Limestone is a sedimentary rock composed mostly of calcite and aragonite, which are different crystal forms of calcium carbonate
Appinite is an igneous rock in which the crystals are so fine grained that individual minerals cannot be easily distinguished
1.2 History
1.2.1 Origin
New Zealand
Unknown
1.2.2 Discoverer
Belsazar Hacquet
Unknown
1.3 Etymology
From lime and stone in late 14th Century
From the variety of Lamprophyre Greek lampros bright and shining + porphureos purple
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic or Non-Clastic
Porphyritic
2.2 Color
Beige, Black, Blue, Brown, Cream, Gold, Green, Grey, Light Green, Light Grey, Linen, Pink, Red, Rust, Silver, White, Yellow
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough and Banded
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Whetstones
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, Cobblestones, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar, Roadstone, Source of calcium
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
In Chemical and Pharmaceutical Industry, Medicines and Cosmetics
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Animal feed filler, As a Feed Additive for Livestock, Paper Industry, Raw material for manufacture of quicklime, slaked lime, Soil Conditioner, Used in aquariums, Whiting material in toothpaste, paint and paper
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner
4 Types
4.1 Types
Chalk, Coquina, Fossiliferous Limestone, Lithographic Limestone, Oolitic Limestone, Travertine, Tufa
Not Available
4.2 Features
Host Rock for Lead, Stalactites and stalagmites are formed from this rock, Zinc and Copper Deposits
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Acropolis of Athens in Greece, Agia Sophia in Istanbul, Turkey, Al Aqsa Mosque in Jerusalem, Angkor Wat in Cambodia, Big Ben in London, Charminar in Hyderabad, India, Chhatrapati Shivaji Terminus in Maharashtra, India, Chichen Itza in Mexico, Empire State Building in New York, Khajuraho Temples, India, Kremlin in Moscow, Louvre in Paris, France, Neuschwanstein in Bavaria, Potala Palace in Lahasa, Tibet, Wailing Wall in Jerusalem
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Ajanta Caves in Maharashtra, India, Elephanta Caves in Maharashtra, India
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Limestone is a sedimentary rock which is mainly made up of calcium carbonate.
The formation of Appinite takes place deep beneath the Earth’s surface at around 150 to 450 kms, and are erupted rapidly and violently.
5.2 Composition
5.2.1 Mineral Content
Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, MgO
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-45-6
Coal
1 7
6.1.2 Grain Size
Fine Grained
Fine to Coarse Grained
6.1.3 Fracture
Splintery
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Dull to Pearly
Subvitreous to Dull
6.1.7 Compressive Strength
115.00 N/mm2NA
Obsidian
0.15 450
6.1.8 Cleavage
Non-Existent
Conchoidal
6.1.9 Toughness
1
Not Available
6.1.10 Specific Gravity
2.3-2.72.86-2.87
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.3-2.7 g/cm32.95-2.96 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.91 kJ/Kg KNA
Granulite
0.14 3.2
6.2.2 Resistance
Pressure Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Brunei, India, Indonesia, Malaysia, Singapore, Thailand, Vietnam
Russia
7.1.2 Africa
Cameroon, Chad, Ghana, Kenya, Malawi, Sudan, Tanzania, Togo, Zambia, Zimbabwe
Angola, Botswana, Cameroon, Ethiopia, South Africa
7.1.3 Europe
United Kingdom
England, Hungary, Iceland, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, Mexico, USA
7.2.2 South America
Colombia
Argentina, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
Adelaide, New Zealand, Queensland, Tonga, Victoria, Yorke Peninsula
New South Wales, New Zealand, Queensland, South Australia, Western Australia

Limestone vs Appinite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Limestone and Appinite Reserves. Limestone is a sedimentary rock composed mostly of calcite and aragonite, which are different crystal forms of calcium carbonate. Appinite is an igneous rock in which the crystals are so fine grained that individual minerals cannot be easily distinguished. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Limestone vs Appinite information and Limestone vs Appinite characteristics in the upcoming sections.

Limestone vs Appinite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Limestone vs Appinite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Limestone and Properties of Appinite. Learn more about Limestone vs Appinite in the next section. The interior uses of Limestone include Decorative aggregates and Interior decoration whereas the interior uses of Appinite include Decorative aggregates, Homes and Interior decoration. Due to some exceptional properties of Limestone and Appinite, they have various applications in construction industry. The uses of Limestone in construction industry include Cement manufacture, Cobblestones, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar, Roadstone, Source of calcium and that of Appinite include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Limestone and Appinite

Here you can know more about Limestone and Appinite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Limestone and Appinite consists of mineral content and compound content. The mineral content of Limestone includes Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt and mineral content of Appinite includes Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Sedimentary Rocks. When we have to compare Limestone vs Appinite, the texture, color and appearance plays an important role in determining the type of rock. Limestone is available in beige, black, blue, brown, cream, gold, green, grey, light green, light grey, linen, pink, red, rust, silver, white, yellow colors whereas, Appinite is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Limestone is Rough and Banded and that of Appinite is Dull, Banded and Foilated. Properties of rock is another aspect for Limestone vs Appinite. The hardness of Limestone is 3-4 and that of Appinite is 5-6. The types of Limestone are Chalk, Coquina, Fossiliferous Limestone, Lithographic Limestone, Oolitic Limestone, Travertine, Tufa whereas types of Appinite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Limestone and Appinite is white. The specific heat capacity of Limestone is 0.91 kJ/Kg K and that of Appinite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Limestone is pressure resistant whereas Appinite is heat resistant, impact resistant.