Definition
Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene
  
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
  
History
  
  
Origin
Unknown
  
Pennsylvania, U.S.
  
Discoverer
Unknown
  
Unknown
  
Etymology
From early 19th century coined in French, formed irregularly from Greek diorizein distinguish
  
From Greek anthrakites, from anthrax, anthrak meaning coal
  
Class
Igneous Rocks
  
Metamorphic Rocks
  
Sub-Class
Durable Rock, Hard Rock
  
Durable Rock, Soft Rock
  
Family
  
  
Group
Plutonic
  
Not Applicable
  
Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
  
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
  
Texture
Phaneritic
  
Amorphous, Glassy
  
Color
Black, Brown, Light to Dark Grey, White
  
Black, Brown, Dark Brown, Grey, Light to Dark Grey
  
Maintenance
Less
  
Less
  
Durability
Durable
  
Durable
  
Water Resistant
No
  
No
  
Scratch Resistant
No
  
No
  
Stain Resistant
No
  
No
  
Wind Resistant
Yes
  
No
  
Acid Resistant
No
  
No
  
Appearance
Shiny
  
Veined or Pebbled
  
Architecture
  
  
Interior Uses
Decorative Aggregates, Interior Decoration
  
Not Yet Used
  
Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
  
Not Yet Used
  
Other Architectural Uses
Curbing
  
Not Yet Used
  
Industry
  
  
Construction Industry
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
  
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
  
Medical Industry
Not Yet Used
  
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
  
Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
  
Not Yet Used
  
Other Uses
  
  
Commercial Uses
Creating Artwork, Curling
  
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
  
Types
Not Available
  
Semi-anthracite and Meta-anthracite
  
Features
Typically speckled black and white.
  
Helps in production of Heat and Electricity, Used as fossil fuel
  
Archaeological Significance
  
  
Monuments
Used
  
Not Yet Used
  
Famous Monuments
Data Not Available
  
Not Applicable
  
Sculpture
Used
  
Not Yet Used
  
Famous Sculptures
Data Not Available
  
Not Applicable
  
Pictographs
Not Used
  
Used
  
Petroglyphs
Not Used
  
Used
  
Figurines
Used
  
Not Yet Used
  
Fossils
Absent
  
Absent
  
Formation
Diorite is a coarse-grained intrusive igneous rock which contains large interlocking and randomly oriented crystals and forms when molten lava does not reach the Earth’s surface and cools down in the Earth’s crust.
  
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
  
Composition
  
  
Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
  
Calcite, Clay, Clay Minerals
  
Compound Content
Silicon Dioxide
  
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
  
Transformation
  
  
Metamorphism
Yes
  
Yes
  
Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
  
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
  
Weathering
Yes
  
No
  
Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
  
Not Applicable
  
Erosion
Yes
  
No
  
Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
  
Not Applicable
  
Physical Properties
  
  
Hardness
6-7
  
1-1.5
  
Grain Size
Medium to Coarse Grained
  
Medium to Fine Coarse Grained
  
Fracture
Not Available
  
Conchoidal
  
Streak
Bluish Black
  
Black
  
Porosity
Very Less Porous
  
Less Porous
  
Luster
Shiny
  
Shiny
  
Compressive Strength
225.00 N/mm
2
  
7
Not Available
  
Cleavage
Not Available
  
Non-Existent
  
Toughness
2.1
  
Not Available
  
Specific Gravity
2.8-3
  
1.1-1.4
  
Transparency
Opaque
  
Opaque
  
Density
2.8-3 g/cm3
  
1.25-2.5 g/cm3
  
Thermal Properties
  
  
Specific Heat Capacity
Not Available
  
1.32 kJ/Kg K
  
4
Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
  
Heat Resistant, Water Resistant
  
Deposits in Eastern Continents
  
  
Asia
Not Yet Found
  
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
  
Africa
Egypt
  
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
  
Europe
Finland, Germany, Italy, Romania, Sweden, Turkey, United Kingdom
  
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
  
Others
Not Yet Found
  
Not Yet Found
  
Deposits in Western Continents
  
  
North America
USA
  
Canada, Mexico, USA
  
South America
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
  
Brazil, Chile, Colombia, Venezuela
  
Deposits in Oceania Continent
  
  
Australia
New Zealand, Western Australia
  
New South Wales, Queensland, Victoria
  
Diorite vs Anthracite Characteristics
Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Diorite vs Anthracite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Diorite and Properties of Anthracite. Learn more about Diorite vs Anthracite in the next section. The interior uses of Diorite include Decorative aggregates and Interior decoration whereas the interior uses of Anthracite include Not yet used. Due to some exceptional properties of Diorite and Anthracite, they have various applications in construction industry. The uses of Diorite in construction industry include As dimension stone, Cement manufacture, Cobblestones, Construction aggregate, For road aggregate and that of Anthracite include Cement manufacture, For road aggregate, Making natural cement, Steel production.
More about Diorite and Anthracite
Here you can know more about Diorite and Anthracite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Diorite and Anthracite consists of mineral content and compound content. The mineral content of Diorite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon and mineral content of Anthracite includes Calcite, Clay, Clay Minerals. You can also check out the list of all Igneous Rocks. When we have to compare Diorite vs Anthracite, the texture, color and appearance plays an important role in determining the type of rock. Diorite is available in black, brown, light to dark grey, white colors whereas, Anthracite is available in black, brown, dark brown, grey, light to dark grey colors. Appearance of Diorite is Shiny and that of Anthracite is Veined or Pebbled. Properties of rock is another aspect for Diorite vs Anthracite. The hardness of Diorite is 6-7 and that of Anthracite is 1-1.5. The types of Diorite are Not Available whereas types of Anthracite are Semi-anthracite and Meta-anthracite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Diorite is bluish black while that of Anthracite is black. The specific heat capacity of Diorite is Not Available and that of Anthracite is 1.32 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Diorite is heat resistant, pressure resistant, wear resistant whereas Anthracite is heat resistant, water resistant.