×

Coal
Coal

Gneiss
Gneiss



ADD
Compare
X
Coal
X
Gneiss

Coal and Gneiss

Add ⊕
1 Definition
1.1 Definition
Coal is a combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers called coal beds
Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks
1.2 History
1.2.1 Origin
USA
Unknown
1.2.2 Discoverer
John Peter Salley
Unknown
1.3 Etymology
From the Old English term col, which has meant mineral of fossilized carbon since the 13th century
From the Middle High German verb gneist (to spark; so called because the rock glitters)
1.4 Class
Sedimentary Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Amorphous, Glassy
Banded, Foliated, Platy
2.2 Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey
Black, Brown, Pink, Red, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Veined or Pebbled
Foliated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Countertops, Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
Not Yet Used
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
Cemetery Markers, Jewelry, Tombstones, Used in aquariums
4 Types
4.1 Types
Peat, Lignite, Sub-Bituminous Coal, Bituminous Coal, Anthracite, Graphite
Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.
4.2 Features
Helps in production of Heat and Electricity, Used as fossil fuel
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Konark Sun Temple in India, Washington Monument, US
4.3.3 Sculpture
Not Yet Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Not Yet Used
Not Yet Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Coal forms from the accumulation of plant debris in a swamp environment which is buried by sediments such as mud or sand and then compacted to form coal.
Gneiss is a high grade metamorphic rock i.e. it has been subjected to higher temperatures and pressures than schist. It is formed by the metamorphosis of Gneiss forms from volcanic rock, shale or granitie.
5.2 Composition
5.2.1 Mineral Content
Analcime, Apatite, Barite, Calcite, Chalcopyrite, Chlorite, Chromite, Clausthalite, Clay Minerals, Crandallite Group, Dolomite, Feldspar, Galena, Gypsum, Marcasite, Muscovite or Illite, Pyrite, Quartz, Siderite, Sphalerite, Zircon
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
5.2.2 Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
Impact Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion, Sea Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-1.57
Slate
1 7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium to Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Dull to Vitreous to Submetallic
Dull
6.1.7 Compressive Strength
NA125.00 N/mm2
What Is Obsidian
0.15 450
6.1.8 Cleavage
Non-Existent
Poor
6.1.9 Toughness
Not Available
1.2
6.1.10 Specific Gravity
1.1-1.42.5-2.7
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
1100-1400 g/cm32.6-2.9 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
1.32 kJ/Kg KNA
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
7.1.2 Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
7.1.3 Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Switzerland, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Brazil, Chile, Colombia, Venezuela
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Victoria
New South Wales, New Zealand, Queensland, Victoria

All about Coal and Gneiss Properties

Know all about Coal and Gneiss properties here. All properties of rocks are important as they define the type of rock and its application. Coal belongs to Sedimentary Rocks while Gneiss belongs to Metamorphic Rocks.Texture of Coal is Amorphous, Glassy whereas that of Gneiss is Banded, Foliated, Platy. Coal appears Veined or Pebbled and Gneiss appears Foliated. The luster of Coal is dull to vitreous to submetallic while that of Gneiss is dull. Coal is available in black, brown, dark brown, grey, light to dark grey colors whereas Gneiss is available in black, brown, pink, red, white colors. The commercial uses of Coal are alumina refineries, electricity generation, liquid fuel, manufacture of soap, solvents, dyes, plastics and fibres, paper industry and that of Gneiss are cemetery markers, jewelry, tombstones, used in aquariums.