×

Borolanite
Borolanite

Dolomite
Dolomite



ADD
Compare
X
Borolanite
X
Dolomite

Borolanite and Dolomite

1 Definition
1.1 Definition
Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight
1.2 History
1.2.1 Origin
Scotland
Southern Alps, France
1.2.2 Discoverer
Unknown
Dolomieu
1.3 Etymology
From Alkalic Igneous complex near Loch Borralan in northwest Scotland
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular
Earthy
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Banded and Foilated
Glassy or Pearly
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration
Decorative Aggregates, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Boninite and Jasperoid
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Borolanites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Clay Minerals, Pyrite, Quartz, Sulfides
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Chemical Weathering, Mechanical Weathering
Not Applicable
5.3.5 Erosion
5.3.6 Types of Erosion
Wind Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-63.5-4
Coal
1 7
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal to Uneven
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Greasy to Dull
Vitreous and Pearly
6.1.7 Compressive Strength
150.00 N/mm2140.00 N/mm2
What Is Obsidian
0.15 450
6.1.8 Cleavage
Poor
Perfect
6.1.9 Toughness
Not Available
1
6.1.10 Specific Gravity
2.62.8-3
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Transparent to Translucent
6.1.12 Density
2.6 g/cm32.8-2.9 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NA0.92 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
China, India
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Morocco, Namibia
7.1.3 Europe
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden
Austria, Italy, Romania, Spain, Switzerland
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Mexico, USA
7.2.2 South America
Brazil, Chile, Colombia, Uruguay, Venezuela
Brazil, Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia
New South Wales, Queensland, Yorke Peninsula

All about Borolanite and Dolomite Properties

Know all about Borolanite and Dolomite properties here. All properties of rocks are important as they define the type of rock and its application. Borolanite belongs to Igneous Rocks while Dolomite belongs to Sedimentary Rocks.Texture of Borolanite is Granular whereas that of Dolomite is Earthy. Borolanite appears Banded and Foilated and Dolomite appears Glassy or Pearly. The luster of Borolanite is greasy to dull while that of Dolomite is vitreous and pearly. Borolanite is available in brown, buff, cream, green, grey, pink, white colors whereas Dolomite is available in black, brown, colourless, green, grey, pink, white colors. The commercial uses of Borolanite are cemetery markers and that of Dolomite are an oil and gas reservoir, as a feed additive for livestock, gemstone, metallurgical flux, production of lime, soil conditioner, source of magnesia (mgo).