Home
×

Borolanite
Borolanite

Felsite
Felsite



ADD
Compare
X
Borolanite
X
Felsite

Borolanite vs Felsite

1 Definition
1.1 Definition
Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix
Felsite is a very fine grained volcanic rock that may or may not contain larger crystals and light colored rock that typically requires petrographic examination or chemical analysis for more precise definition
1.2 History
1.2.1 Origin
Scotland
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Alkalic Igneous complex near Loch Borralan in northwest Scotland
From English feldspar and -ite
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular
Arborescent Patterned, Vitreous
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Black, Blue, Brown, Green, Orange, Red, Tan, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration
Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
Arrowheads, Cutting Tool, Knives, Scrapers, Spear Points
3.2.2 Medical Industry
Not Yet Used
Surgery
3.3 Antiquity Uses
Artifacts
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers
Mirror, Jewelry
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Available in Lots of Colors and Patterns, Clasts are smooth to touch, Splintery, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Borolanites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
Felsite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Feldspar, Iron Oxides
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Regional Metamorphism
Burial Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Wind Erosion
Chemical Erosion, Glacier Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
5-5.5
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Conchoidal to Uneven
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Greasy to Dull
Vitreous
6.1.7 Compressive Strength
Flint
150.00 N/mm2
Rank: 14 (Overall)
0.15 N/mm2
Rank: 33 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Poor
Non-Existent
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.6
2.6-2.7
6.1.11 Transparency
Translucent to Opaque
Translucent
6.1.12 Density
2.6 g/cm3
2.6 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
Afghanistan, Indonesia, Japan, Russia
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Kenya
7.1.3 Europe
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden
Greece, Hungary, Iceland, Italy, Turkey
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Mexico, USA
7.2.2 South America
Brazil, Chile, Colombia, Uruguay, Venezuela
Argentina, Chile, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia
New Zealand

Borolanite vs Felsite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Borolanite and Felsite Reserves. Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix. Felsite is a very fine grained volcanic rock that may or may not contain larger crystals and light colored rock that typically requires petrographic examination or chemical analysis for more precise definition. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Borolanite vs Felsite information and Borolanite vs Felsite characteristics in the upcoming sections.

Borolanite vs Felsite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Borolanite vs Felsite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Borolanite and Properties of Felsite. Learn more about Borolanite vs Felsite in the next section. The interior uses of Borolanite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Felsite include Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Borolanite and Felsite, they have various applications in construction industry. The uses of Borolanite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Felsite include Arrowheads, Cutting tool, Knives, Scrapers, Spear points.

More about Borolanite and Felsite

Here you can know more about Borolanite and Felsite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Borolanite and Felsite consists of mineral content and compound content. The mineral content of Borolanite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Felsite includes Feldspar, Iron Oxides. You can also check out the list of all Igneous Rocks. When we have to compare Borolanite vs Felsite, the texture, color and appearance plays an important role in determining the type of rock. Borolanite is available in brown, buff, cream, green, grey, pink, white colors whereas, Felsite is available in black, blue, brown, green, orange, red, tan, yellow colors. Appearance of Borolanite is Banded and Foilated and that of Felsite is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Borolanite vs Felsite. The hardness of Borolanite is 5.5-6 and that of Felsite is 5-5.5. The types of Borolanite are Not Available whereas types of Felsite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Borolanite and Felsite is white. The specific heat capacity of Borolanite is Not Available and that of Felsite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Borolanite is heat resistant, impact resistant, wear resistant whereas Felsite is heat resistant, impact resistant.

Let Others Know
×