Home
×

Boninite
Boninite

Dolomite
Dolomite



ADD
Compare
X
Boninite
X
Dolomite

Boninite vs Dolomite

Add ⊕
1 Definition
1.1 Definition
Boninite is a mafic extrusive rock which is high in magnesium and silica content, formed in fore-arc environments, typically during the early stages of subduction
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight
1.2 History
1.2.1 Origin
Japan
Southern Alps, France
1.2.2 Discoverer
Unknown
Dolomieu
1.3 Etymology
From its occurrence in the Izu-Bonin arc south of Japan
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Earthy
2.2 Color
Bluish - Grey, Brown, Colourless, Green, Grey
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Glassy or Pearly
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Kitchens
Decorative Aggregates, Homes, Interior Decoration
3.1.2 Exterior Uses
Garden Decoration, Office Buildings
Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Not Yet Used
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Cemetery Markers, Creating Artwork, Soil Conditioner, Source of Magnesia (MgO)
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Boninite and Jasperoid
4.2 Features
Available in Lots of Colors and Patterns, High Mg content, Is one of the oldest rock
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Boninite is a type of Igneous rock which is formed through the cooling and solidification of lava or existing rocks.
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite
Clay Minerals, Pyrite, Quartz, Sulfides
5.2.2 Compound Content
Silicon Dioxide
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Wind Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
3.5-4
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Uneven
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Vitreous
Vitreous and Pearly
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
140.00 N/mm2
Rank: 15 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
1.1
1
6.1.10 Specific Gravity
2.5-2.8
2.8-3
6.1.11 Transparency
Opaque
Transparent to Translucent
6.1.12 Density
Not Available
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Available
China, India
7.1.2 Africa
South Africa
Morocco, Namibia
7.1.3 Europe
England, Finland, United Kingdom
Austria, Italy, Romania, Spain, Switzerland
7.1.4 Others
Antarctica, Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Mexico, USA
7.2.2 South America
Colombia, Uruguay
Brazil, Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New South Wales, Queensland, Yorke Peninsula

Boninite vs Dolomite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Boninite and Dolomite Reserves. Boninite is a mafic extrusive rock which is high in magnesium and silica content, formed in fore-arc environments, typically during the early stages of subduction. Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Boninite vs Dolomite information and Boninite vs Dolomite characteristics in the upcoming sections.

Boninite vs Dolomite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Boninite vs Dolomite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Boninite and Properties of Dolomite. Learn more about Boninite vs Dolomite in the next section. The interior uses of Boninite include Decorative aggregates, Homes and Kitchens whereas the interior uses of Dolomite include Decorative aggregates, Homes and Interior decoration. Due to some exceptional properties of Boninite and Dolomite, they have various applications in construction industry. The uses of Boninite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Dolomite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock.

More about Boninite and Dolomite

Here you can know more about Boninite and Dolomite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Boninite and Dolomite consists of mineral content and compound content. The mineral content of Boninite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite and mineral content of Dolomite includes Clay Minerals, Pyrite, Quartz, Sulfides. You can also check out the list of all Igneous Rocks. When we have to compare Boninite vs Dolomite, the texture, color and appearance plays an important role in determining the type of rock. Boninite is available in bluish - grey, brown, colourless, green, grey colors whereas, Dolomite is available in black, brown, colourless, green, grey, pink, white colors. Appearance of Boninite is Dull and Soft and that of Dolomite is Glassy or Pearly. Properties of rock is another aspect for Boninite vs Dolomite. The hardness of Boninite is 7 and that of Dolomite is 3.5-4. The types of Boninite are Not Available whereas types of Dolomite are Boninite and Jasperoid. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Boninite and Dolomite is white. The specific heat capacity of Boninite is Not Available and that of Dolomite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Boninite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Dolomite is heat resistant, pressure resistant, wear resistant.

Let Others Know
×