×

Dolomite
Dolomite

Enderbite
Enderbite



ADD
Compare
X
Dolomite
X
Enderbite

Dolomite vs Enderbite

1 Definition
1.1 Definition
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight
Enderbite rock is an igneous rock which belongs to the Charnockite rock series
1.3 History
1.3.1 Origin
Southern Alps, France
Enderby Land, Antarctica
1.3.2 Discoverer
Dolomieu
Unknown
1.5 Etymology
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock
From its occurrence in Enderby Land, Antarctica
1.6 Class
Sedimentary Rocks
Igneous Rocks
2.1.2 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
2.2 Family
2.2.1 Group
Not Applicable
Plutonic
2.4 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
3 Texture
3.1 Texture
Earthy
Granular
3.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Grey, Orange, Pink, White
3.3 Maintenance
Less
Less
3.5 Durability
Durable
Durable
3.5.2 Water Resistant
3.5.4 Scratch Resistant
3.5.5 Stain Resistant
3.6.2 Wind Resistant
3.6.4 Acid Resistant
3.7 Appearance
Glassy or Pearly
Veined or Pebbled
4 Uses
4.1 Architecture
4.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Homes, Hotels, Kitchens, Stair Treads
4.1.2 Exterior Uses
Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Bridges, Paving Stone, Garden Decoration, Office Buildings
4.1.3 Other Architectural Uses
Not Yet Used
Curbing
4.2 Industry
4.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
As Dimension Stone
4.2.3 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
4.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
4.4 Other Uses
4.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Curling, Gemstone, Laboratory bench tops, Tombstones
5 Types
5.1 Types
Boninite and Jasperoid
Not Available
5.2 Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
6.2 Archaeological Significance
6.2.1 Monuments
Used
Used
6.2.2 Famous Monuments
Data Not Available
Data Not Available
6.2.4 Sculpture
Used
Used
6.2.6 Famous Sculptures
Data Not Available
Data Not Available
6.2.7 Pictographs
Used
Not Used
6.3.2 Petroglyphs
Used
Not Used
6.3.4 Figurines
Used
Used
6.5 Fossils
Present
Absent
7 Formation
7.1 Formation
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.
Charnockite is an intrusive igneous rock which is very hard and is formed due to weathering of existing rocks.
7.3 Composition
7.3.1 Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz
8.1.1 Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
8.2 Transformation
8.2.1 Metamorphism
8.4.1 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Contact Metamorphism, Impact Metamorphism
8.4.3 Weathering
8.4.5 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering
1.0.1 Erosion
1.2.2 Types of Erosion
Not Applicable
Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
2 Properties
2.1 Physical Properties
2.1.2 Hardness
3.5-46-7
Coal
1 7
4.1.2 Grain Size
Medium to Fine Coarse Grained
Coarse Grained
4.1.4 Fracture
Conchoidal
Not Available
4.1.5 Streak
White
White
5.1.2 Porosity
Less Porous
Very Less Porous
5.1.4 Luster
Vitreous and Pearly
Not Available
5.1.7 Compressive Strength
140.00 N/mm2NA
Obsidian
0.15 450
5.3.10 Cleavage
Perfect
Not Available
5.3.11 Toughness
1
Not Available
5.3.12 Specific Gravity
2.8-3Not Available
Granite
0 8.4
5.3.13 Transparency
Transparent to Translucent
Opaque
5.4.2 Density
2.8-2.9 g/cm32.6 g/cm3
Granite
0 1400
5.5 Thermal Properties
5.5.1 Specific Heat Capacity
0.92 kJ/Kg KNA
Granulite
0.14 3.2
6.1.5 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
India
7.1.3 Africa
Morocco, Namibia
Not Available
7.1.4 Europe
Austria, Italy, Romania, Spain, Switzerland
Not Available
7.2.2 Others
Not Yet Found
Antarctica
7.3 Deposits in Western Continents
7.3.1 North America
Mexico, USA
USA
7.3.2 South America
Brazil, Colombia
Not Available
7.4 Deposits in Oceania Continent
7.4.1 Australia
New South Wales, Queensland, Yorke Peninsula
Not Available

Dolomite vs Enderbite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Dolomite and Enderbite Reserves. Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight. Enderbite rock is an igneous rock which belongs to the Charnockite rock series. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Dolomite vs Enderbite information and Dolomite vs Enderbite characteristics in the upcoming sections.

Dolomite vs Enderbite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Dolomite vs Enderbite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Dolomite and Properties of Enderbite. Learn more about Dolomite vs Enderbite in the next section. The interior uses of Dolomite include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Enderbite include Bathrooms, Countertops, Decorative aggregates, Entryways, Floor tiles, Homes, Hotels, Kitchens and Stair treads. Due to some exceptional properties of Dolomite and Enderbite, they have various applications in construction industry. The uses of Dolomite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock and that of Enderbite include As dimension stone.

More about Dolomite and Enderbite

Here you can know more about Dolomite and Enderbite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Dolomite and Enderbite consists of mineral content and compound content. The mineral content of Dolomite includes Clay Minerals, Pyrite, Quartz, Sulfides and mineral content of Enderbite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Sedimentary Rocks. When we have to compare Dolomite vs Enderbite, the texture, color and appearance plays an important role in determining the type of rock. Dolomite is available in black, brown, colourless, green, grey, pink, white colors whereas, Enderbite is available in black, grey, orange, pink, white colors. Appearance of Dolomite is Glassy or Pearly and that of Enderbite is Veined or Pebbled. Properties of rock is another aspect for Dolomite vs Enderbite. The hardness of Dolomite is 3.5-4 and that of Enderbite is 6-7. The types of Dolomite are Boninite and Jasperoid whereas types of Enderbite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Dolomite and Enderbite is white. The specific heat capacity of Dolomite is 0.92 kJ/Kg K and that of Enderbite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Dolomite is heat resistant, pressure resistant, wear resistant whereas Enderbite is heat resistant, wear resistant.