Home
×

Boninite
Boninite

Adamellite
Adamellite



ADD
Compare
X
Boninite
X
Adamellite

Boninite vs Adamellite

1 Definition
1.1 Definition
Boninite is a mafic extrusive rock which is high in magnesium and silica content, formed in fore-arc environments, typically during the early stages of subduction
Adamellite is a coarse-grained porphyritic igneous rock, a variety of Monzogranite and dominated by phenocrysts of orthoclase in a granular groundmass of perthite, plagioclase and quartz
1.2 History
1.2.1 Origin
Japan
Italy
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From its occurrence in the Izu-Bonin arc south of Japan
From German adamellit and from Monte Adamello, a mountain in Italy, its locality
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Porphyritic
2.2 Color
Bluish - Grey, Brown, Colourless, Green, Grey
Black, Grey, Orange, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Kitchens
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Homes, Hotels, Kitchens, Stair Treads
3.1.2 Exterior Uses
Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Bridges, Paving Stone, Near Swimming Pools, Office Buildings, Resorts
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Cemetery Markers, Creating Artwork, Soil Conditioner, Source of Magnesia (MgO)
Curling, Gemstone, Laboratory bench tops, Tombstones
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Available in Lots of Colors and Patterns, High Mg content, Is one of the oldest rock
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Boninite is a type of Igneous rock which is formed through the cooling and solidification of lava or existing rocks.
Adamellite is a type of Igneous rock which is formed through the cooling and solidification of lava or magma and is a variety of Monzogranite.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite
Apatite, Biotite, Chlorite, Orthoclase, Perthite, Plagioclase, Quartz, Titanite, Zircon
5.2.2 Compound Content
Silicon Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Wind Erosion
Chemical Erosion, Glacier Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
6-7
6.1.2 Grain Size
Fine Grained
Coarse Grained
6.1.3 Fracture
Uneven
Not Available
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Vitreous
Dull to Grainy with Sporadic parts Pearly and Vitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
175.00 N/mm2
Rank: 13 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Not Available
6.1.9 Toughness
1.1
Not Available
6.1.10 Specific Gravity
2.5-2.8
2.6-2.7
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
Not Available
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.79 kJ/Kg K
Rank: 16 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Available
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
South Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
England, Finland, United Kingdom
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela
7.1.4 Others
Antarctica, Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Colombia, Uruguay
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
Not Yet Found

Boninite vs Adamellite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Boninite and Adamellite Reserves. Boninite is a mafic extrusive rock which is high in magnesium and silica content, formed in fore-arc environments, typically during the early stages of subduction. Adamellite is a coarse-grained porphyritic igneous rock, a variety of Monzogranite and dominated by phenocrysts of orthoclase in a granular groundmass of perthite, plagioclase and quartz. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Boninite vs Adamellite information and Boninite vs Adamellite characteristics in the upcoming sections.

Boninite vs Adamellite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Boninite vs Adamellite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Boninite and Properties of Adamellite. Learn more about Boninite vs Adamellite in the next section. The interior uses of Boninite include Decorative aggregates, Homes and Kitchens whereas the interior uses of Adamellite include Bathrooms, Countertops, Decorative aggregates, Entryways, Floor tiles, Homes, Hotels, Kitchens and Stair treads. Due to some exceptional properties of Boninite and Adamellite, they have various applications in construction industry. The uses of Boninite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Adamellite include As dimension stone.

More about Boninite and Adamellite

Here you can know more about Boninite and Adamellite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Boninite and Adamellite consists of mineral content and compound content. The mineral content of Boninite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite and mineral content of Adamellite includes Apatite, Biotite, Chlorite, Orthoclase, Perthite, Plagioclase, Quartz, Titanite, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Boninite vs Adamellite, the texture, color and appearance plays an important role in determining the type of rock. Boninite is available in bluish - grey, brown, colourless, green, grey colors whereas, Adamellite is available in black, grey, orange, pink, white colors. Appearance of Boninite is Dull and Soft and that of Adamellite is Veined or Pebbled. Properties of rock is another aspect for Boninite vs Adamellite. The hardness of Boninite is 7 and that of Adamellite is 6-7. The types of Boninite are Not Available whereas types of Adamellite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Boninite and Adamellite is white. The specific heat capacity of Boninite is Not Available and that of Adamellite is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Boninite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Adamellite is heat resistant, wear resistant.

Let Others Know
×