Home
×

Anthracite
Anthracite

Litchfieldite
Litchfieldite



ADD
Compare
X
Anthracite
X
Litchfieldite

Anthracite vs Litchfieldite

1 Definition
1.1 Definition
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
Litchfieldite is a rare igneous rock which is coarse-grained, foliated and a variety of nepheline syenite, sometimes also called as nepheline syenite gneiss or gneissic nepeheline syenite
1.2 History
1.2.1 Origin
Pennsylvania, U.S.
USA
1.2.2 Discoverer
Unknown
Bayley
1.3 Etymology
From Greek anthrakites, from anthrax, anthrak meaning coal
From its occurrence at Litchfield, Maine, USA
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Amorphous, Glassy
Granular
2.2 Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Veined or Pebbled
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Countertops, Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
Not Yet Used
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
3.2.2 Medical Industry
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
Not Yet Used
3.3 Antiquity Uses
Not Yet Used
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
Creating Artwork
4 Types
4.1 Types
Semi-anthracite and Meta-anthracite
Borolanite and Litchfieldite
4.2 Features
Helps in production of Heat and Electricity, Used as fossil fuel
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
Litchfieldite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Calcite, Clay, Clay Minerals
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
5.2.2 Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Coastal Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-1.5
5.5-6
6.1.2 Grain Size
Medium to Fine Coarse Grained
Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal to Uneven
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Shiny
Greasy to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
150.00 N/mm2
Rank: 14 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Non-Existent
Poor
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
1.1-1.4
2.6
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
1.25-2.5 g/cm3
2.6 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
1.32 kJ/Kg K
Rank: 4 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Water Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
Not Yet Found
7.1.2 Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
South Africa
7.1.3 Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
Finland, Norway, Portugal
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada
7.2.2 South America
Brazil, Chile, Colombia, Venezuela
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Victoria
Not Yet Found

Anthracite vs Litchfieldite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Anthracite and Litchfieldite Reserves. Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster. Litchfieldite is a rare igneous rock which is coarse-grained, foliated and a variety of nepheline syenite, sometimes also called as nepheline syenite gneiss or gneissic nepeheline syenite. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Anthracite vs Litchfieldite information and Anthracite vs Litchfieldite characteristics in the upcoming sections.

Anthracite vs Litchfieldite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Anthracite vs Litchfieldite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Anthracite and Properties of Litchfieldite. Learn more about Anthracite vs Litchfieldite in the next section. The interior uses of Anthracite include Not yet used whereas the interior uses of Litchfieldite include Countertops, Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Anthracite and Litchfieldite, they have various applications in construction industry. The uses of Anthracite in construction industry include Cement manufacture, For road aggregate, Making natural cement, Steel production and that of Litchfieldite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Anthracite and Litchfieldite

Here you can know more about Anthracite and Litchfieldite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Anthracite and Litchfieldite consists of mineral content and compound content. The mineral content of Anthracite includes Calcite, Clay, Clay Minerals and mineral content of Litchfieldite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Metamorphic Rocks. When we have to compare Anthracite vs Litchfieldite, the texture, color and appearance plays an important role in determining the type of rock. Anthracite is available in black, brown, dark brown, grey, light to dark grey colors whereas, Litchfieldite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Anthracite is Veined or Pebbled and that of Litchfieldite is Banded and Foilated. Properties of rock is another aspect for Anthracite vs Litchfieldite. The hardness of Anthracite is 1-1.5 and that of Litchfieldite is 5.5-6. The types of Anthracite are Semi-anthracite and Meta-anthracite whereas types of Litchfieldite are Borolanite and Litchfieldite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Anthracite is black while that of Litchfieldite is white. The specific heat capacity of Anthracite is 1.32 kJ/Kg K and that of Litchfieldite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Anthracite is heat resistant, water resistant whereas Litchfieldite is heat resistant, impact resistant, wear resistant.

Let Others Know
×