Home
×

Anthracite
Anthracite

Porphyry
Porphyry



ADD
Compare
X
Anthracite
X
Porphyry

Anthracite and Porphyry

1 Definition
1.1 Definition
Anthracite is a type of sedimentary rock which is hard and is variety of coal that has high luster
Porphyry is a reddish-brown to purple igneous rock containing large phenocrysts of various minerals embedded in a fine-grained matrix
1.2 History
1.2.1 Origin
Pennsylvania, U.S.
Egypt
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Greek anthrakites, from anthrax, anthrak meaning coal
From Old French porfire, from Italian porfiro and in some cases directly from Latin porphyrites
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Amorphous, Glassy
Porphyritic
2.2 Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey
Black, Brown, Colourless, Green, Grey, Red, Rust, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Veined or Pebbled
Dull
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
Not Yet Used
Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
Construction Aggregate
3.2.2 Medical Industry
In Chemical and Pharmaceutical Industry, Manufacture of Aspirins
Not Yet Used
3.3 Antiquity Uses
Not Yet Used
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
Creating Artwork, Gemstone, Jewelry
4 Types
4.1 Types
Semi-anthracite and Meta-anthracite
Rhomb Porphyry
4.2 Features
Helps in production of Heat and Electricity, Used as fossil fuel
Generally rough to touch, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Anthracite forms from the accumulation of plant debris in a swamp environment. When plant debris dies and falls into the swamp, the standing water of the swamp protects it from decay.
Porphyry is formed in two stages: the magma cools slowly deep within the crust or the magma is cools rapidly as it erupts from a volcano, creating small grains that are usually invisible to naked eye.
5.2 Composition
5.2.1 Mineral Content
Calcite, Clay, Clay Minerals
Biotite, Chert, Feldspar, Garnet, Graphite, Quartz, Silica
5.2.2 Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Not Registered
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-1.5
6-7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Irregular
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Shiny
Dull
6.1.7 Compressive Strength
What Is Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Non-Existent
Imperfect
6.1.9 Toughness
Not Available
1.7
6.1.10 Specific Gravity
1.1-1.4
2.5-4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
1.25-2.5 g/cm3
2.5-2.52 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
1.32 kJ/Kg K
Rank: 4 (Overall)
Not Available
Rank: N/A (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Water Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
China, Kazakhstan, South Korea, Thailand, Turkey, Vietnam
7.1.2 Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
Egypt, Ethiopia, Ghana, South Africa
7.1.3 Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
Finland, France, Germany, Great Britain, Hungary, Iceland, Ireland, Italy, Netherlands, Norway, Romania, Sweden, Switzerland
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada, Cuba, Jamaica, USA
7.2.2 South America
Brazil, Chile, Colombia, Venezuela
Bolivia, Brazil, Colombia, Ecuador, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Victoria
New South Wales, New Zealand, Western Australia

All about Anthracite and Porphyry Properties

Know all about Anthracite and Porphyry properties here. All properties of rocks are important as they define the type of rock and its application. Anthracite belongs to Metamorphic Rocks while Porphyry belongs to Igneous Rocks.Texture of Anthracite is Amorphous, Glassy whereas that of Porphyry is Porphyritic. Anthracite appears Veined or Pebbled and Porphyry appears Dull. The luster of Anthracite is shiny while that of Porphyry is dull. Anthracite is available in black, brown, dark brown, grey, light to dark grey colors whereas Porphyry is available in black, brown, colourless, green, grey, red, rust, white colors. The commercial uses of Anthracite are alumina refineries, electricity generation, liquid fuel, manufacture of soap, solvents, dyes, plastics and fibres, paper industry and that of Porphyry are creating artwork, gemstone, jewelry.