Home
×

Amphibolite
Amphibolite

Boninite
Boninite



ADD
Compare
X
Amphibolite
X
Boninite

Amphibolite vs Boninite

1 Definition
1.1 Definition
Amphibolite can be defined as a granular metamorphic rock which mainly consist of hornblende and plagioclase
Boninite is a mafic extrusive rock which is high in magnesium and silica content, formed in fore-arc environments, typically during the early stages of subduction
1.2 History
1.2.1 Origin
Unknown
Japan
1.2.2 Discoverer
Alexandre Brongniart
Unknown
1.3 Etymology
From Amphibole + -ite
From its occurrence in the Izu-Bonin arc south of Japan
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Banded, Foliated, Massive
Aphanitic to Porphyritic
2.2 Color
Black, Brown, Green, Grey
Bluish - Grey, Brown, Colourless, Green, Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Foliated
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Kitchens
Decorative Aggregates, Homes, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Office Buildings
Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cobblestones, Construction Aggregate, for Road Aggregate, Landscaping, Production of Glass and Ceramics, Roadstone
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork
An Oil and Gas Reservoir, Cemetery Markers, Creating Artwork, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Hornblendite
Not Available
4.2 Features
Clasts are smooth to touch, Matrix variable, Surfaces are often shiny
Available in Lots of Colors and Patterns, High Mg content, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Amphibolite is a coarse-grained metamorphic rock which forms by metamorphism of mafic igneous rocks like basalt and gabbro or from the metamorphism of clay-rich sedimentary rocks like marl or graywacke.
Boninite is a type of Igneous rock which is formed through the cooling and solidification of lava or existing rocks.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Andalusite, Biotite, Calcite, Epidote, Garnet, Hornblade, Kyanite, Magnetite, Olivine, Plagioclase, Pyroxene, Staurolite, Wollastonite
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Glacier Erosion, Sea Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
7
6.1.2 Grain Size
Medium to Coarse Grained
Fine Grained
6.1.3 Fracture
Irregular to Conchoidal
Uneven
6.1.4 Streak
White to Grey
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Vitreous to Dull
Vitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Irregular
Not Available
6.1.9 Toughness
2.3
1.1
6.1.10 Specific Gravity
2.5
2.5-2.8
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.85-3.07 g/cm3
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Russia, Turkey
Not Available
7.1.2 Africa
Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Rwanda, Somalia, South Africa, Sudan, Tanzania, Uganda
South Africa
7.1.3 Europe
Germany, Greece, Iceland, Norway, Poland
England, Finland, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Colombia, Uruguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
South Australia, Western Australia
New Zealand, Western Australia

Amphibolite vs Boninite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Amphibolite and Boninite Reserves. Amphibolite can be defined as a granular metamorphic rock which mainly consist of hornblende and plagioclase. Boninite is a mafic extrusive rock which is high in magnesium and silica content, formed in fore-arc environments, typically during the early stages of subduction. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Amphibolite vs Boninite information and Amphibolite vs Boninite characteristics in the upcoming sections.

Amphibolite vs Boninite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Amphibolite vs Boninite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Amphibolite and Properties of Boninite. Learn more about Amphibolite vs Boninite in the next section. The interior uses of Amphibolite include Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels and Kitchens whereas the interior uses of Boninite include Decorative aggregates, Homes and Kitchens. Due to some exceptional properties of Amphibolite and Boninite, they have various applications in construction industry. The uses of Amphibolite in construction industry include As dimension stone, Building houses or walls, Cobblestones, Construction aggregate, For road aggregate, Landscaping, Production of glass and ceramics, Roadstone and that of Boninite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Amphibolite and Boninite

Here you can know more about Amphibolite and Boninite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Amphibolite and Boninite consists of mineral content and compound content. The mineral content of Amphibolite includes Amphibole, Andalusite, Biotite, Calcite, Epidote, Garnet, Hornblade, Kyanite, Magnetite, Olivine, Plagioclase, Pyroxene, Staurolite, Wollastonite and mineral content of Boninite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite. You can also check out the list of all Igneous Rocks. When we have to compare Amphibolite vs Boninite, the texture, color and appearance plays an important role in determining the type of rock. Amphibolite is available in black, brown, green, grey colors whereas, Boninite is available in bluish - grey, brown, colourless, green, grey colors. Appearance of Amphibolite is Foliated and that of Boninite is Dull and Soft. Properties of rock is another aspect for Amphibolite vs Boninite. The hardness of Amphibolite is 6-7 and that of Boninite is 7. The types of Amphibolite are Hornblendite whereas types of Boninite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Amphibolite is white to grey while that of Boninite is white. The specific heat capacity of Amphibolite is Not Available and that of Boninite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Amphibolite is heat resistant, pressure resistant, wear resistant whereas Boninite is heat resistant, impact resistant, pressure resistant, wear resistant.

Let Others Know
×