Home
×

Boninite
Boninite

Syenite
Syenite



ADD
Compare
X
Boninite
X
Syenite

Boninite vs Syenite

Add ⊕
1 Definition
1.1 Definition
Boninite is a mafic extrusive rock which is high in magnesium and silica content, formed in fore-arc environments, typically during the early stages of subduction
Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals
1.2 History
1.2.1 Origin
Japan
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From its occurrence in the Izu-Bonin arc south of Japan
From French syénite, from Latin Syenites (lapis ) (stone) of Syene
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Earthy
2.2 Color
Bluish - Grey, Brown, Colourless, Green, Grey
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Kitchens
Flooring, Homes, Hotels, Interior Decoration
3.1.2 Exterior Uses
Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Cemetery Markers, Creating Artwork, Soil Conditioner, Source of Magnesia (MgO)
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Not Available
Shonkinite
4.2 Features
Available in Lots of Colors and Patterns, High Mg content, Is one of the oldest rock
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Boninite is a type of Igneous rock which is formed through the cooling and solidification of lava or existing rocks.
Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
5.2.2 Compound Content
Silicon Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
5.5-6
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Uneven
Not Available
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Vitreous
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
150.00 N/mm2
Rank: 14 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
1.1
Not Available
6.1.10 Specific Gravity
2.5-2.8
2.6-2.7
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
Not Available
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Available
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
South Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
England, Finland, United Kingdom
Bulgaria, England, Germany, Norway, Romania, Switzerland
7.1.4 Others
Antarctica, Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
USA
7.2.2 South America
Colombia, Uruguay
Brazil, Chile
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New Zealand, Queensland, South Australia, Western Australia

Boninite vs Syenite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Boninite and Syenite Reserves. Boninite is a mafic extrusive rock which is high in magnesium and silica content, formed in fore-arc environments, typically during the early stages of subduction. Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Boninite vs Syenite information and Boninite vs Syenite characteristics in the upcoming sections.

Boninite vs Syenite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Boninite vs Syenite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Boninite and Properties of Syenite. Learn more about Boninite vs Syenite in the next section. The interior uses of Boninite include Decorative aggregates, Homes and Kitchens whereas the interior uses of Syenite include Flooring, Homes, Hotels and Interior decoration. Due to some exceptional properties of Boninite and Syenite, they have various applications in construction industry. The uses of Boninite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Syenite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Boninite and Syenite

Here you can know more about Boninite and Syenite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Boninite and Syenite consists of mineral content and compound content. The mineral content of Boninite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite and mineral content of Syenite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Boninite vs Syenite, the texture, color and appearance plays an important role in determining the type of rock. Boninite is available in bluish - grey, brown, colourless, green, grey colors whereas, Syenite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Boninite is Dull and Soft and that of Syenite is Banded and Foilated. Properties of rock is another aspect for Boninite vs Syenite. The hardness of Boninite is 7 and that of Syenite is 5.5-6. The types of Boninite are Not Available whereas types of Syenite are Shonkinite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Boninite and Syenite is white. The specific heat capacity of Boninite is Not Available and that of Syenite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Boninite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Syenite is heat resistant, impact resistant, wear resistant.

Let Others Know
×