Home
×

Troctolite
Troctolite

Chert
Chert



ADD
Compare
X
Troctolite
X
Chert

Troctolite vs Chert

Add ⊕
1 Definition
1.1 Definition
Troctolite is a mafic intrusive rock type. It consists essentially of major but variable amounts of olivine and calcic plagioclase along with minor pyroxene. It is an olivine-rich anorthosite, or a pyroxene-depleted relative of gabbro
Chert is a hard, dark, opaque sedimentary rock which is composed of silica with an amorphous fine-grained texture
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Christian Leopold von Buch
Unknown
1.3 Etymology
From German Troklotit, from Greek trōktēs, a marine fish (taken to be trout)
From flint-like quartz, 1670s, of unknown origin- a local term, which has been taken into geological use
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Banded, Rough
2.2 Color
Dark Grey to Black
Black, Brown, Green, Grey, Red, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Veined and Shiny
Glassy or Pearly
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Bathrooms, Countertops, Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration, Kitchens
Decorative Aggregates, Homes
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
Arrowheads, Construction Aggregate, Cutting Tool, Spear Points
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Monuments
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
Creating Artwork, Gemstone, In fire-starting tools, Jewelry, To ignite fire, Used in flintlock firearms
4 Types
4.1 Types
Not Available
Flint, Jasper, Radiolarite, Common Chert, Chalcedony, Agate, Onyx, Opal, Magadi-type Chert, Porcelanite, Siliceous Sinter
4.2 Features
Smooth to touch
Clasts are smooth to touch, Easily splits into thin plates, Has High structural resistance against erosion and climate
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Troctolite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Chert forms when microcrystals of silicon dioxide grow within soft sediments that become limestone or chalk. The chert formation can be either of chemical or biological origin.
5.2 Composition
5.2.1 Mineral Content
Augite, Olivine, Plagioclase, Pyroxene
Quartz, Silicon
5.2.2 Compound Content
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Mechanical Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
6.5-7
6.1.2 Grain Size
Coarse Grained
Very fine-grained
6.1.3 Fracture
Conchoidal
Uneven, Splintery or Conchoidal
6.1.4 Streak
Black
White
6.1.5 Porosity
Highly Porous
Highly Porous
6.1.6 Luster
Not Available
Waxy and Dull
6.1.7 Compressive Strength
Flint
225.00 N/mm2
Rank: 7 (Overall)
450.00 N/mm2
Rank: 1 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Non-Existent
6.1.9 Toughness
1.6
1.5
6.1.10 Specific Gravity
2.86-2.87
2.5-2.8
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.7-3.3 g/cm3
2.7 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.74 kJ/Kg K
Rank: 19 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
China, India, Iran, Japan, Oman, Russia, Saudi Arabia, Taiwan, Thailand, Vietnam
7.1.2 Africa
South Africa
Kenya, Morocco, South Africa, Tanzania
7.1.3 Europe
Germany, Greece, Italy, Scotland, Turkey
Austria, France, Greece, Italy, Malta, Poland, Portugal, Serbia, Spain, Sweden, United Kingdom
7.1.4 Others
Greenland
Greenland, Mid-Atlantic Ridge
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Mexico, USA
7.2.2 South America
Brazil, Colombia, Venezuela
Bolivia, Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland
New South Wales, Queensland, South Australia, Western Australia

Troctolite vs Chert Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Troctolite and Chert Reserves. Troctolite is a mafic intrusive rock type. It consists essentially of major but variable amounts of olivine and calcic plagioclase along with minor pyroxene. It is an olivine-rich anorthosite, or a pyroxene-depleted relative of gabbro. Chert is a hard, dark, opaque sedimentary rock which is composed of silica with an amorphous fine-grained texture. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Troctolite vs Chert information and Troctolite vs Chert characteristics in the upcoming sections.

Troctolite vs Chert Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Troctolite vs Chert characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Troctolite and Properties of Chert. Learn more about Troctolite vs Chert in the next section. The interior uses of Troctolite include Bathrooms, Countertops, Decorative aggregates, Entryways, Flooring, Homes, Interior decoration and Kitchens whereas the interior uses of Chert include Decorative aggregates and Homes. Due to some exceptional properties of Troctolite and Chert, they have various applications in construction industry. The uses of Troctolite in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate and that of Chert include Arrowheads, Construction aggregate, Cutting tool, Spear points.

More about Troctolite and Chert

Here you can know more about Troctolite and Chert. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Troctolite and Chert consists of mineral content and compound content. The mineral content of Troctolite includes Augite, Olivine, Plagioclase, Pyroxene and mineral content of Chert includes Quartz, Silicon. You can also check out the list of all Igneous Rocks. When we have to compare Troctolite vs Chert, the texture, color and appearance plays an important role in determining the type of rock. Troctolite is available in dark grey to black colors whereas, Chert is available in black, brown, green, grey, red, white colors. Appearance of Troctolite is Veined and Shiny and that of Chert is Glassy or Pearly. Properties of rock is another aspect for Troctolite vs Chert. The hardness of Troctolite is 7 and that of Chert is 6.5-7. The types of Troctolite are Not Available whereas types of Chert are Flint, Jasper, Radiolarite, Common Chert, Chalcedony, Agate, Onyx, Opal, Magadi-type Chert, Porcelanite, Siliceous Sinter. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Troctolite is black while that of Chert is white. The specific heat capacity of Troctolite is Not Available and that of Chert is 0.74 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Troctolite is impact resistant, pressure resistant, wear resistant whereas Chert is heat resistant, impact resistant, pressure resistant, wear resistant.

Let Others Know
×