Home
×

Troctolite
Troctolite

Anorthosite
Anorthosite



ADD
Compare
X
Troctolite
X
Anorthosite

Troctolite vs Anorthosite

1 Definition
1.1 Definition
Troctolite is a mafic intrusive rock type. It consists essentially of major but variable amounts of olivine and calcic plagioclase along with minor pyroxene. It is an olivine-rich anorthosite, or a pyroxene-depleted relative of gabbro
Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Christian Leopold von Buch
Unknown
1.3 Etymology
From German Troklotit, from Greek trōktēs, a marine fish (taken to be trout)
From French anorthose plagioclase + -ite1
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Foliated, Glassy
2.2 Color
Dark Grey to Black
Black, Bluish - Grey, Brown, Green, Grey, Light Greenish Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Veined and Shiny
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Bathrooms, Countertops, Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration, Kitchens
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
As Dimension Stone, Cement Manufacture, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
Creating Artwork, Curling
4 Types
4.1 Types
Not Available
Proterozoic Anorthosite and Archean Anorthosite
4.2 Features
Smooth to touch
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Troctolite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Anorthosite is a phaneritic, intrusive igneous rock which is characterized by a predominance of plagioclase feldspar which is almost 90–100%, and a minimal mafic component.
5.2 Composition
5.2.1 Mineral Content
Augite, Olivine, Plagioclase, Pyroxene
Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
Ca, CaO, Chromium(III) Oxide, MgO, Sulfur Trioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Mechanical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Chemical Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
5-6
6.1.2 Grain Size
Coarse Grained
Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular
6.1.4 Streak
Black
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Not Available
Pearly to Subvitreous
6.1.7 Compressive Strength
Flint
225.00 N/mm2
Rank: 7 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Irregular
6.1.9 Toughness
1.6
Not Available
6.1.10 Specific Gravity
2.86-2.87
2.62-2.82
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
2.7-3.3 g/cm3
2.7-4 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.84 kJ/Kg K
Rank: 15 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Not Yet Found
7.1.2 Africa
South Africa
Not Yet Found
7.1.3 Europe
Germany, Greece, Italy, Scotland, Turkey
Bulgaria, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Malta, Poland, Portugal, Romania, Slovenia, Spain, Sweden, The Czech Republic
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada
7.2.2 South America
Brazil, Colombia, Venezuela
Bolivia, Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland
Central Australia, South Australia, Western Australia

Troctolite vs Anorthosite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Troctolite and Anorthosite Reserves. Troctolite is a mafic intrusive rock type. It consists essentially of major but variable amounts of olivine and calcic plagioclase along with minor pyroxene. It is an olivine-rich anorthosite, or a pyroxene-depleted relative of gabbro. Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Troctolite vs Anorthosite information and Troctolite vs Anorthosite characteristics in the upcoming sections.

Troctolite vs Anorthosite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Troctolite vs Anorthosite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Troctolite and Properties of Anorthosite. Learn more about Troctolite vs Anorthosite in the next section. The interior uses of Troctolite include Bathrooms, Countertops, Decorative aggregates, Entryways, Flooring, Homes, Interior decoration and Kitchens whereas the interior uses of Anorthosite include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Troctolite and Anorthosite, they have various applications in construction industry. The uses of Troctolite in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate and that of Anorthosite include As dimension stone, Cement manufacture, For road aggregate.

More about Troctolite and Anorthosite

Here you can know more about Troctolite and Anorthosite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Troctolite and Anorthosite consists of mineral content and compound content. The mineral content of Troctolite includes Augite, Olivine, Plagioclase, Pyroxene and mineral content of Anorthosite includes Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Troctolite vs Anorthosite, the texture, color and appearance plays an important role in determining the type of rock. Troctolite is available in dark grey to black colors whereas, Anorthosite is available in black, bluish - grey, brown, green, grey, light greenish grey, pink, white colors. Appearance of Troctolite is Veined and Shiny and that of Anorthosite is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Troctolite vs Anorthosite. The hardness of Troctolite is 7 and that of Anorthosite is 5-6. The types of Troctolite are Not Available whereas types of Anorthosite are Proterozoic Anorthosite and Archean Anorthosite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Troctolite is black while that of Anorthosite is white. The specific heat capacity of Troctolite is Not Available and that of Anorthosite is 0.84 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Troctolite is impact resistant, pressure resistant, wear resistant whereas Anorthosite is heat resistant, impact resistant, pressure resistant, scratch resistant, wear resistant.