Home
×

Tephrite
Tephrite

Diabase
Diabase



ADD
Compare
X
Tephrite
X
Diabase

Tephrite and Diabase

Add ⊕
1 Definition
1.1 Definition
Tephrite is an aphanitic to porphyritic textured, volcanic igneous rock
Diabase is a fine-grained igneous rock which is composed mostly of pyroxene and feldspar
1.2 History
1.2.1 Origin
Germany
Germany
1.2.2 Discoverer
Van Tooren
Christian Leopold von Buch
1.3 Etymology
From Greek tephra, ashes from Indo-European base, to burn
From Greek di + base
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Aphanitic, Granular
2.2 Color
Black, Brown, Colourless, Green, Grey, White
Dark Grey to Black
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Vesicular
Vesicular
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Flooring, Homes, Interior Decoration
Countertops, Decorative Aggregates, Homes, Interior Decoration, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Landscaping
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Production of Lime, Soil Conditioner
An Oil and Gas Reservoir, Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Host Rock for Lead
Smooth to touch
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Stonehenge in English county of Wiltshire
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Tephrite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Diabase forms when molten igneous rock is squeezed up into a vertical crack in other rocks, the crack is usually forced apart and the molten rock cools in the space to form a tabular igneous intrusion cutting across the surrounding rocks and is known as a dike.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Nepheline, Plagioclase, Pyroxene
Augite, Chlorite, Olivine, Plagioclase, Pyroxene, Pyrrhotite, Serpentine
5.2.2 Compound Content
CaO, Carbon Dioxide, MgO, Silicon Dioxide
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.5
7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine to Medium Grained
6.1.3 Fracture
Uneven
Conchoidal
6.1.4 Streak
Bluish Black
Black
6.1.5 Porosity
Very Less Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Not Available
6.1.7 Compressive Strength
What Is Flint
90.00 N/mm2
Rank: 22 (Overall)
225.00 N/mm2
Rank: 7 (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Crenulation and Pervasive
Not Available
6.1.9 Toughness
2.4
1.6
6.1.10 Specific Gravity
2.86
2.86-2.87
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.7-3.3 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
0.92 kJ/Kg K
Rank: 10 (Overall)
Not Available
Rank: N/A (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
India
7.1.2 Africa
Namibia, Uganda
South Africa, Tanzania
7.1.3 Europe
Germany, Hungary, Italy, Portugal, Spain
Germany, Greece, Italy, Scotland, Turkey
7.1.4 Others
Not Yet Found
Antarctica, Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Not Yet Found
Argentina, Brazil, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
Central Australia, New Zealand, Queensland, Western Australia

All about Tephrite and Diabase Properties

Know all about Tephrite and Diabase properties here. All properties of rocks are important as they define the type of rock and its application. Tephrite and Diabase belong to Igneous Rocks.Texture of Tephrite is Aphanitic to Porphyritic whereas that of Diabase is Aphanitic, Granular. Tephrite appears Vesicular and Diabase appears Vesicular. The luster of Tephrite is subvitreous to dull while that of Diabase is not available. Tephrite is available in black, brown, colourless, green, grey, white colors whereas Diabase is available in dark grey to black colors. The commercial uses of Tephrite are production of lime, soil conditioner and that of Diabase are an oil and gas reservoir, cemetery markers, commemorative tablets, laboratory bench tops, jewelry, sea defence, tombstones.