Home
×

Syenite
Syenite

Obsidian
Obsidian



ADD
Compare
X
Syenite
X
Obsidian

Syenite vs Obsidian

Add ⊕
1 Definition
1.1 Definition
Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals
Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimum crystal growth
1.2 History
1.2.1 Origin
Unknown
Ethiopia
1.2.2 Discoverer
Unknown
Obsius
1.3 Etymology
From French syénite, from Latin Syenites (lapis ) (stone) of Syene
From Latin obsidianus, misprint of Obsianus (lapis) (stone) of Obsius
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Opaque Rock
2 Texture
2.1 Texture
Earthy
Glassy
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Black, Blue, Brown, Green, Orange, Red, Tan, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Flooring, Homes, Hotels, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
Arrowheads, Cutting Tool, Knives, Scrapers, Spear Points
3.2.2 Medical Industry
Not Yet Used
Surgery
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Jewellery
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
Creating Artwork, Mirror, Used in aquariums
4 Types
4.1 Types
Shonkinite
Fireworks Obsidian, Mahogany, Sheen Obsidian, Snowflake obsidian and Velvet Peacock Obsidian
4.2 Features
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
Blocks negativity, Helps to protect against depression
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
When the lava is released from volcano, it undergoes a very rapid cooling which freezes the mechanisms of crystallization. The result is a volcanic glass with a uniform smooth texture.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
Not Available
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
5-5.5
6.1.2 Grain Size
Medium to Fine Coarse Grained
Not Applicable
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Subvitreous to Dull
Vitreous
6.1.7 Compressive Strength
Flint
150.00 N/mm2
Rank: 14 (Overall)
0.15 N/mm2
Rank: 33 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Non-Existent
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.6-2.7
2.6-2.7
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
2.6-2.8 g/cm3
2.6 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
Afghanistan, Indonesia, Japan, Russia
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Kenya
7.1.3 Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
Greece, Hungary, Iceland, Italy, Turkey
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, Mexico, USA
7.2.2 South America
Brazil, Chile
Argentina, Chile, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Western Australia
New Zealand

Syenite vs Obsidian Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Syenite and Obsidian Reserves. Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals. Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimum crystal growth. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Syenite vs Obsidian information and Syenite vs Obsidian characteristics in the upcoming sections.

Syenite vs Obsidian Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Syenite vs Obsidian characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Syenite and Properties of Obsidian. Learn more about Syenite vs Obsidian in the next section. The interior uses of Syenite include Flooring, Homes, Hotels and Interior decoration whereas the interior uses of Obsidian include Decorative aggregates and Interior decoration. Due to some exceptional properties of Syenite and Obsidian, they have various applications in construction industry. The uses of Syenite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Obsidian include Arrowheads, Cutting tool, Knives, Scrapers, Spear points.

More about Syenite and Obsidian

Here you can know more about Syenite and Obsidian. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Syenite and Obsidian consists of mineral content and compound content. The mineral content of Syenite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz and mineral content of Obsidian is not available. You can also check out the list of all Igneous Rocks. When we have to compare Syenite vs Obsidian, the texture, color and appearance plays an important role in determining the type of rock. Syenite is available in brown, buff, cream, green, grey, pink, white colors whereas, Obsidian is available in black, blue, brown, green, orange, red, tan, yellow colors. Appearance of Syenite is Banded and Foilated and that of Obsidian is Shiny. Properties of rock is another aspect for Syenite vs Obsidian. The hardness of Syenite is 5.5-6 and that of Obsidian is 5-5.5. The types of Syenite are Shonkinite whereas types of Obsidian are Fireworks Obsidian, Mahogany, Sheen Obsidian, Snowflake obsidian and Velvet Peacock Obsidian. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Syenite and Obsidian is white. The specific heat capacity of Syenite is 0.92 kJ/Kg K and that of Obsidian is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Syenite is heat resistant, impact resistant, wear resistant whereas Obsidian is heat resistant, impact resistant.