Home
×

Soapstone
Soapstone

Amphibolite
Amphibolite



ADD
Compare
X
Soapstone
X
Amphibolite

Soapstone vs Amphibolite

1 Definition
1.1 Definition
It is a metamorphic magnesium rich rock because it is composed of the mineral talc
Amphibolite can be defined as a granular metamorphic rock which mainly consist of hornblende and plagioclase
1.2 History
1.2.1 Origin
USA
Unknown
1.2.2 Discoverer
Unknown
Alexandre Brongniart
1.3 Etymology
From 17th century, because of its greasy feel and use like a soap
From Amphibole + -ite
1.4 Class
Metamorphic Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Polished
Banded, Foliated, Massive
2.2 Color
Black, Black to Grey, Green, Grey
Black, Brown, Green, Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull, Banded and Foilated
Foliated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Bathrooms, Decorative Aggregates, Homes, Interior Decoration
Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Kitchens
3.1.2 Exterior Uses
As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Paving Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Building houses or walls, Cobblestones, Construction Aggregate, for Road Aggregate, Landscaping, Production of Glass and Ceramics, Roadstone
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork, Gemstone, Jewelry, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Production of Lime, Source of Magnesia (MgO)
Cemetery Markers, Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Not Available
Hornblendite
4.2 Features
Host Rock for Lead
Clasts are smooth to touch, Matrix variable, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Christ the Redeemer in Rio de Janeiro, Stonehenge in English county of Wiltshire
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Soapstone is a talc-schist, which is a type of metamorphic rock and it is largely composed of the mineral talc and is thus rich inmagnesium.
Amphibolite is a coarse-grained metamorphic rock which forms by metamorphism of mafic igneous rocks like basalt and gabbro or from the metamorphism of clay-rich sedimentary rocks like marl or graywacke.
5.2 Composition
5.2.1 Mineral Content
Albite, Apatite, Biotite, Calcite, Carbonate, Clay Minerals, Hornblende, Ilmenite, Micas, Plagioclase, Pyroxene, Quartz
Amphibole, Andalusite, Biotite, Calcite, Epidote, Garnet, Hornblade, Kyanite, Magnetite, Olivine, Plagioclase, Pyroxene, Staurolite, Wollastonite
5.2.2 Compound Content
CaO, Mg, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Glacier Erosion, Sea Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1
6-7
6.1.2 Grain Size
Fine Grained
Medium to Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular to Conchoidal
6.1.4 Streak
Black
White to Grey
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Greasy
Vitreous to Dull
6.1.7 Compressive Strength
Flint
225.00 N/mm2
Rank: 7 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Irregular
6.1.9 Toughness
1
2.3
6.1.10 Specific Gravity
2.86
2.5
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.85-3.07 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.88 kJ/Kg K
Rank: 13 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Indonesia, Japan, North Korea, Russia, Saudi Arabia, Singapore, South Korea, Sri Lanka, Tajikistan, Thailand
Russia, Turkey
7.1.2 Africa
Egypt, Ethiopia, Ghana, South Africa, Western Africa
Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Rwanda, Somalia, South Africa, Sudan, Tanzania, Uganda
7.1.3 Europe
Austria, England, Finland, France, Germany, Greece, Spain, Sweden, Switzerland, United Kingdom
Germany, Greece, Iceland, Norway, Poland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Colombia
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New Zealand, Queensland
South Australia, Western Australia

Soapstone vs Amphibolite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Soapstone and Amphibolite Reserves. It is a metamorphic magnesium rich rock because it is composed of the mineral talc. Amphibolite can be defined as a granular metamorphic rock which mainly consist of hornblende and plagioclase. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Soapstone vs Amphibolite information and Soapstone vs Amphibolite characteristics in the upcoming sections.

Soapstone vs Amphibolite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Soapstone vs Amphibolite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Soapstone and Properties of Amphibolite. Learn more about Soapstone vs Amphibolite in the next section. The interior uses of Soapstone include Bathrooms, Decorative aggregates, Homes and Interior decoration whereas the interior uses of Amphibolite include Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels and Kitchens. Due to some exceptional properties of Soapstone and Amphibolite, they have various applications in construction industry. The uses of Soapstone in construction industry include Manufacture of magnesium and dolomite refractories and that of Amphibolite include As dimension stone, Building houses or walls, Cobblestones, Construction aggregate, For road aggregate, Landscaping, Production of glass and ceramics, Roadstone.

More about Soapstone and Amphibolite

Here you can know more about Soapstone and Amphibolite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Soapstone and Amphibolite consists of mineral content and compound content. The mineral content of Soapstone includes Albite, Apatite, Biotite, Calcite, Carbonate, Clay Minerals, Hornblende, Ilmenite, Micas, Plagioclase, Pyroxene, Quartz and mineral content of Amphibolite includes Amphibole, Andalusite, Biotite, Calcite, Epidote, Garnet, Hornblade, Kyanite, Magnetite, Olivine, Plagioclase, Pyroxene, Staurolite, Wollastonite. You can also check out the list of all Metamorphic Rocks. When we have to compare Soapstone vs Amphibolite, the texture, color and appearance plays an important role in determining the type of rock. Soapstone is available in black, black to grey, green, grey colors whereas, Amphibolite is available in black, brown, green, grey colors. Appearance of Soapstone is Dull, Banded and Foilated and that of Amphibolite is Foliated. Properties of rock is another aspect for Soapstone vs Amphibolite. The hardness of Soapstone is 1 and that of Amphibolite is 6-7. The types of Soapstone are Not Available whereas types of Amphibolite are Hornblendite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Soapstone is black while that of Amphibolite is white to grey. The specific heat capacity of Soapstone is 0.88 kJ/Kg K and that of Amphibolite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Soapstone is heat resistant, pressure resistant whereas Amphibolite is heat resistant, pressure resistant, wear resistant.

Let Others Know
×