Home
×

Slate
Slate

Lignite
Lignite



ADD
Compare
X
Slate
X
Lignite

Slate vs Lignite

Add ⊕
1 Definition
1.1 Definition
Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism
Lignite is a soft brownish coal which shows traces of plants and is intermediate between bituminous coal and peat
1.2 History
1.2.1 Origin
England
France
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Old French esclate, from esclat (French éclat)
From French, Latin lignum wood + -ite1
1.4 Class
Metamorphic Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Foliated
Amorphous, Glassy
2.2 Color
Black, Brown, Buff, Green, Light to Dark Grey, Purple, Red, Shades of Blue
Black, Brown, Dark Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Dull
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Bathrooms, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
Not Yet Used
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
Not Yet Used
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone
for Road Aggregate, Steel Production
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Not Yet Used
3.4 Other Uses
3.4.1 Commercial Uses
Blackboards, Commemorative Tablets, Laboratory bench tops, Standard material for the bed of Billiard table, Standard material for the beds of Pool and Snooker table, Tombstones, Used in aquariums, Writing Slates
Electricity Generation
4 Types
4.1 Types
Not Available
Xyloid Lignite or Fossil Wood and Compact Lignite or Perfect Lignite
4.2 Features
Easily splits into thin plates, Surfaces are often shiny, Very fine grained rock
Generally rough to touch, Helps in production of Heat and Electricity, Used as fossil fuel
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Slate is a low grade metamorphic rock that is generally formed by metamorphosis of mudstone or shale, under relatively low pressure and temperature conditions.
Coal formation takes place due to accumulation of plant debris in a swamp environment. The Coal formation process continues, as peat turns into lignite brown or black coal at increasing heat and pressure.
5.2 Composition
5.2.1 Mineral Content
Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon
Not Available
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-4
1
6.1.2 Grain Size
Very fine-grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Splintery
Conchoidal
6.1.4 Streak
Light to dark brown
Black
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Dull
Dull to Vitreous to Submetallic
6.1.7 Compressive Strength
Flint
30.00 N/mm2
Rank: 30 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Slaty
Non-Existent
6.1.9 Toughness
1.2
Not Available
6.1.10 Specific Gravity
2.65-2.8
1.1-1.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.6-2.8 g/cm3
800-801 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.76 kJ/Kg K
Rank: 17 (Overall)
1.26 kJ/Kg K
Rank: 5 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Turkey
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
7.1.2 Africa
Not Yet Found
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
7.1.3 Europe
Belgium, France, Germany, Italy, Norway, Portugal, Spain, United Kingdom
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
7.1.4 Others
Arctic
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, Mexico, USA
7.2.2 South America
Brazil
Brazil, Chile, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, Queensland, Victoria

Slate vs Lignite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Slate and Lignite Reserves. Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism. Lignite is a soft brownish coal which shows traces of plants and is intermediate between bituminous coal and peat. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Slate vs Lignite information and Slate vs Lignite characteristics in the upcoming sections.

Slate vs Lignite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Slate vs Lignite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Slate and Properties of Lignite. Learn more about Slate vs Lignite in the next section. The interior uses of Slate include Bathrooms, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads whereas the interior uses of Lignite include Not yet used. Due to some exceptional properties of Slate and Lignite, they have various applications in construction industry. The uses of Slate in construction industry include As dimension stone and that of Lignite include For road aggregate, Steel production.

More about Slate and Lignite

Here you can know more about Slate and Lignite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Slate and Lignite consists of mineral content and compound content. The mineral content of Slate includes Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon and mineral content of Lignite is not available. You can also check out the list of all Metamorphic Rocks. When we have to compare Slate vs Lignite, the texture, color and appearance plays an important role in determining the type of rock. Slate is available in black, brown, buff, green, light to dark grey, purple, red, shades of blue colors whereas, Lignite is available in black, brown, dark brown, grey, light to dark grey colors. Appearance of Slate is Dull and that of Lignite is Veined or Pebbled. Properties of rock is another aspect for Slate vs Lignite. The hardness of Slate is 3-4 and that of Lignite is 1. The types of Slate are Not Available whereas types of Lignite are Xyloid Lignite or Fossil Wood and Compact Lignite or Perfect Lignite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Slate is light to dark brown while that of Lignite is black. The specific heat capacity of Slate is 0.76 kJ/Kg K and that of Lignite is 1.26 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Slate is heat resistant, impact resistant, pressure resistant, wear resistant whereas Lignite is heat resistant.